
Sketching Algorithms

Jelani Nelson

December 3, 2020



2



Contents

1 Introduction 5

1.1 Probability Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Counting Problems 13

2.1 Approximate counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Analysis of Morris’ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Morris+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Morris++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Distinct elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Idealized FM algorithm: freely stored randomness . . . . . . . . . . . . . . . 16

2.2.2 A non-idealized algorithm: KMV . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Another algorithm via geometric sampling . . . . . . . . . . . . . . . . . . . . 21

2.3 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 q-digest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 MRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 KLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Lower Bounds 31

3.1 Compression-based arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Distinct elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Communication Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Disjointness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.3 Indexing, GapHamming, and Distinct Elements . . . . . . . . . . . . . 39

4 Linear Sketching 43

4.1 Heavy hitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 CountMin sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 CountSketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Graph sketching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 k-sparse recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 SupportFind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 AGM sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Norm estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 AMS sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Indyk’s p-stable sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3



4 CONTENTS

4.3.3 Branching programs and pseudorandom generators . . . . . . . . . . . . . . . 56

5 Johnson-Lindenstrauss Transforms 59
5.1 Proof of the Distributional Johnson-Lindenstrauss lemma . . . . . . . . . . . . . . . 60
5.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Distributional JL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Optimal JL lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Speeding up Johnson-Lindenstrauss transforms . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Sparse Johnson-Lindenstrauss Transform . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Fast Johnson-Lindenstrauss Transform . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Krahmer-Ward theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Linear algebra applications 75
6.1 Approximate matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Sampling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.2 Oblivious linear sketching approach . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Subspace embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.1 Given an orthonormal basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Leverage score sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.3 Oblivious subspace embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Least squares regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.1 Sketch-and-solve via subspace embeddings . . . . . . . . . . . . . . . . . . . . 84
6.3.2 Sketch-and-solve via AMM and subspace embeddings . . . . . . . . . . . . . 85
6.3.3 Accelerating iterative solvers via sketching . . . . . . . . . . . . . . . . . . . . 86

6.4 Approximate low-rank approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Projection-cost preserving sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5.1 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Compressed Sensing 95
7.1 Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Obtaining RIP matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Iterative Hard Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Suprema of stochastic processes and applications 105
8.1 Methods of bounding gaussian mean width . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Instance-wise bounds for Johnson-Lindenstrauss . . . . . . . . . . . . . . . . . . . . 108
8.3 Heavy hitters: the BPTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Chapter 1

Introduction

Sketching and streaming. A sketch C(X) of some data set X with respect to some function
f is a compression of X that allows us to compute, or approximately compute, f(X) given access
only to C(X). Sometimes f has 2 (or multiple) arguments, and for data X and Y , we want to
compute f(X,Y ) given C(X), C(Y ). For example, if two servers on a network want to compute
some similarity or distance measure on their data, one can simply send the sketch to another (or
each to a third party), which reduces network bandwith compared to sending the entirety of X,Y .

As a trivial example, consider the case that Alice has a data set X which is a set of integers,
and Bob has a similar data set Y . They want to compute f(X,Y ) =

∑
z∈X∪Y z. Then each party

can let the sketch of their data simply be the sum of all elements in their data set.
When designing streaming algorithms, we want to maintain a sketch C(X) on the fly as X is

updated. In the previous example, if say Alice’s data set is being inserted into on the fly then she
can of course maintain a sketch by keeping a running sum. The streaming setting appears in many
scenarios, such as for example an Internet router monitoring network traffic, or a search engine
monitoring a query stream.

1.1 Probability Review

We will mainly be dealing with discrete random variables; we consider random variables taking
values in some countable subset S ⊂ R. Recall the expectation of X is defined to be

EX =
∑
j∈S

j · P(X = j).

We now state a few basic lemmas and facts without proof.

Lemma 1.1.1 (Linearity of expectation).

E(X + Y ) = EX + EY (1.1)

Lemma 1.1.2 (Markov). If X is a nonnegative random variable, then

∀λ > 0, P(X > λ) <
EX
λ

Lemma 1.1.3 (Chebyshev).

∀λ > 0,P(|X − EX| > λ) <
E(X − EX)2

λ2
(1.2)

5



6 CHAPTER 1. INTRODUCTION

Proof. P(|X−EX| > λ) = P((X−EX)2 > λ2), and thus the claim follows by Markov’s inequality.

Rather than the second moment, one can also consider larger moments to obtain:

∀p ≥ 1,∀λ > 0, P(|X − EX| > λ) <
E |X − EX|p

λp
. (1.3)

By a calculation and picking p optimally (or by Markov’s inequality on the moment-generating
function etX and appropriately picking t), one can also obtain the following “Chernoff bound”.

Theorem 1.1.4 (Chernoff bound). Suppose X1, . . . , Xn are independent random variables with
Xi ∈ [0, 1]. Let X =

∑
iXi and write µ := EX. Then

∀λ > 0, P(X > (1 + λ)µ) <

(
eλ

(1 + λ)1+λ

)µ
(upper tail) (1.4)

and also

∀λ > 0, P(X < (1− λ)µ) <

(
e−λ

(1− λ)1−λ

)µ
(lower tail) (1.5)

Proof. We give the standard proof via bounding the moment-generating function (MGF), and only
for the upper tail and only when each Xi is a Bernoulli random variable with parameter pi (equal
to 1 with probability pi and 0 otherwise); standard references provide proofs of the most general
form. The proof for the lower tail is similar. First,

P(X > (1 + λ)µ) = P(etX > et(1+λ)µ)

for any t ∈ R since the map x 7→ etx is strictly increasing. As etX is a nonnegative random variable,
we can apply Markov’s inequality.

P(etX > et(1+λ)µ) < e−t(1+λ)µ · E etX (Markov)

= e−t(1+λ)µ · E et
∑
iXi

= e−t(1+λ)µ · E

[∏
i

etXi

]
= e−t(1+λ)µ ·

∏
i

E etXi (independence of the Xi)

= e−t(1+λ)µ ·
∏
i

(
pie

t + (1− pi)
)

= e−t(1+λ)µ ·
∏
i

(
1 + pi(e

t − 1))
)

≤ e−t(1+λ)µ ·
∏
i

epi(e
t−1) (1 + a ≤ ea)

= e−t(1+λ)µ · e(et−1)
∑
i pi

= e(et−1−t−λt)µ

=

(
eλ

(1 + λ)1+λ

)µ
(set t = ln(1 + λ)) (1.6)

The lower tail is similar though one writes P(X < (1 − λ)µ) = P(−X > −(1 − λ)µ) = P(e−tX >
e−t(1−λ)µ then does similar calculations and optimizes choice of t.



1.1. PROBABILITY REVIEW 7

Remark 1.1.5. The upper tail has two regimes of interest for λ: λ � 1 and λ � 1. Note when
λ < 1, we have

eλ

(1 + λ)1+λ
=

eλ

e(1+λ) ln(1+λ)

=
eλ

e(1+λ)(λ−λ2/2+O(λ3))
(Taylor’s theorem)

= e−λ
2µ/2+O(λ3µ).

Rather than use an O(λ3) bound from Taylor’s theorem, one can show a more precise inequality
ln(1 + λ) ≥ 2λ/(2 + λ) for any λ ≥ 0 and use it achieve the final upper bound e−λ

2µ/3.
The second regime of interest is large λ, i.e. λ � 1 (specifically λ > 2e − 1). In this case,

e/(1 + λ) is less than 1/2 and is also O(1/λ) so that the overall upper tail bound is

λ−Ω(λµ). (1.7)

For the lower tail, as we are only ever interested in λ ≤ 1 (as X < 0 trivially has probability 0
of occurring), logarithmic approximations as for the upper tail can be used to obtain the lower tail
bound e−λ

2µ/2. By combining the upper and lower tails via a union bound,

P(|X − µ| > λµ) < e−λ
2µ/3 + e−λ

2µ/2 < 2e−λ
2µ/3. (1.8)

We also have the following, similar “Hoeffding bound”, which can also be proven via Markov’s
inequality applied to the MGF and optimizing choice of t.

Theorem 1.1.6 (Hoeffding bound). Suppose X1, . . . , Xn are i.i.d. Bernoulli(p) random variables
for some p ∈ (0, 1). Then for any ε ∈ (0, 1),

P

(
n∑
i=1

Xi > (p+ ε)n

)
< e−2ε2n,

and

P

(
n∑
i=1

Xi < (p− ε)n

)
< e−2ε2n.

Another inequality we will make use of is Khintchine’s inequality. It essentially says that when
σi are i.i.d. Rademachers and x1 are scalars,

∑
i σixi is what is known as “subgaussian” (i.e. decays

at least as fast as a gaussian of some variance).

Theorem 1.1.7 (Khintchine). Let σ1, . . . , σn be Rademacher random variables (i.e. uniform in
{−1, 1}) and independent, and x ∈ Rn is fixed. Then ∀λ > 0, P(|〈σ, x〉| > λ) ≤ 2e−λ

2/2‖x‖22.

Proof. Define X =
∑

i σixi. Then

E etX =
∏
i

E etσixi

=
∏
i

1

2
(e−txi + etxi)

=
∏
i

(
1 +

(txi)
2

2!
+

(txi)
4

4!
+

(txi)
6

6!
+ . . .

)
(Taylor expansion)



8 CHAPTER 1. INTRODUCTION

≤
∏
i

(
1 +

(txi)
2

1! · 2
+

(txi)
4

2! · 22
+

(txi)
6

3! · 23
+ . . .

)
=
∏
i

et
2x2
i /2

= et
2‖x‖22/2 (1.9)

Eq. (1.9) is exactly the MGF of a gaussian random variable g with mean zero and variance ‖x‖22.
To see that this implies the desired tail bound, by Markov’s inequality we then have P(X > λ) =
P(etX > etλ) < e−tλ+t2‖x‖22/2 by Markov’s inequality and Eq. (1.9). This is equal to e−λ

2/(2‖x‖22)

by setting t = λ/‖x‖22. Since we are looking at the event |X| > λ, we must also bound P(−X >
λ) = P(e−tX > etλ) < e−tλ+(−t)2‖x‖2/2, which is the same as above. Thus the claim holds, since
P(|X| > λ) = P(X > λ)+P(−X > λ) as these are disjoint events (or alternatively it is good enough
to say the right hand side is an upper bound, which holds via the union bound).

We also make use of the following inequality.

Theorem 1.1.8 (Jensen’s inequality). Let X be a random variable supported in R, and suppose
ϕ : R→ R is convex. Then ϕ(EX) ≤ Eϕ(X).

The following is a corollary of Jensen’s inequality that we frequently use, where ‖X‖p denotes
(E |X|p)1/p is a norm for p ≥ 1.

Lemma 1.1.9. For 1 ≤ p ≤ q, ‖X‖p ≤ ‖X‖q.

Proof. Define ϕ(x) = |x|q/p, which is convex. Then by Theorem 1.1.8 applied to the random
variable |X|p,

(E |X|p)q/p = ϕ(E |X|p) ≤ Eϕ(|X|p) = E |X|q.

Raising both sides to the 1/qth power yields the result.

Lemma 1.1.10 (Symmetrization / Desymmetrization). Let Z1, . . . , Zn be independent random
variables. Let r1, . . . , rn be independent Rademachers. Then

‖
∑
i

Zi − E
∑
i

Zi‖p ≤ 2 · ‖
∑
i

riZi‖p (symmetrization inequality)

and
(1/2) · ‖

∑
i

ri(Zi − EZi)‖p ≤ ‖
∑
i

Zi‖p (desymmetrization inequality).

Proof. For the first inequality, let Y1, . . . , Yn be independent of the Zi but identically distributed
to them. Then

‖
∑
i

Zi − E
∑
i

Zi‖p = ‖
∑
i

Zi − E
Y

∑
i

Yi‖p

≤ ‖
∑
i

(Zi − Yi)‖p (Jensen)

= ‖
∑
i

ri(Zi − Yi)‖p (1.10)

≤ 2 · ‖
∑
i

riXi‖p (triangle inequality)



1.1. PROBABILITY REVIEW 9

Eq. (1.10) follows since the Xi − Yi are independent across i and symmetric.

For the second inequality, let Yi be as before. Then

‖
∑
i

ri(Zi − EZi)‖p = ‖E
Y

∑
i

ri(Zi − Yi)‖p

≤ ‖
∑
i

ri(Zi − Yi)‖p (Jensen)

= ‖
∑
i

(Zi − Yi)‖p

≤ 2 · ‖
∑
i

Zi‖p (triangle inequality)

Lemma 1.1.11 (Decoupling [dlPnG99]). Let x1, . . . , xn be independent and mean zero, and x′1, . . . , x
′
n

identically distributed as the xi and independent of them. Then for any (ai,j) and for all p ≥ 1

‖
∑
i 6=j

ai,jxixj‖p ≤ 4‖
∑
i,j

ai,jxix
′
j‖p

Proof. Let η1, . . . , ηn be independent Bernoulli random variables each of expectation 1/2. Then

‖
∑
i 6=j

ai,jxixj‖p = 4 · ‖E
η

∑
i 6=j

ai,jxixj |ηi||1− ηj |‖p

≤ 4 · ‖
∑
i 6=j

ai,jxixjηi(1− ηj)‖p (Jensen) (1.11)

Hence there must be some fixed vector η′ ∈ {0, 1}n which achieves

‖
∑
i 6=j

ai,jxixjηi(1− ηj)‖p ≤ ‖
∑
i∈S

∑
j /∈S

ai,jxixj‖p

where S = {i : η′i = 1}. Let xS denote the |S|-dimensional vector corresponding to the xi for i ∈ S.
Then

‖
∑
i∈S

∑
j /∈S

ai,jxixj‖p = ‖
∑
i∈S

∑
j /∈S

ai,jxix
′
j‖p

= ‖ E
xS

E
x′
S̄

∑
i,j

ai,jxix
′
j‖p (Exi = Ex′j = 0)

≤ ‖
∑
i,j

ai,jxix
′
j‖p (Jensen)

The following proof of the Hanson-Wright was shared to me by Sjoerd Dirksen (personal commu-
nication). A newer proof which we do not cover here, using more modern tools that allow extension
to subgaussian variables and not just Rademachers, is given in [RV13]. Recall the Frobenius norm
is defined by ‖A‖F := (

∑
i,j A

2
i,j)

1/2, and the operator norm by ‖A‖ = sup‖x‖2=‖y‖2=1 x
>Ay.



10 CHAPTER 1. INTRODUCTION

Theorem 1.1.12 (Hanson-Wright inequality [HW71]). For σ1, . . . , σn independent Rademachers
and A ∈ Rn×n, for all p ≥ 1

‖σ>Aσ − Eσ>Aσ‖p .
√
p · ‖A‖F + p · ‖A‖.

Proof. Without loss of generality we assume in this proof that p ≥ 2 (so that p/2 ≥ 1). Then

‖σ>Aσ − Eσ>Aσ‖p . ‖σ>Aσ′‖p (Lemma 1.1.11) (1.12)

.
√
p · ‖‖Ax‖2‖p (Khintchine) (1.13)

=
√
p · ‖‖Ax‖22‖

1/2
p/2 (1.14)

≤ √p · ‖‖Ax‖22‖1/2p

≤ √p · (‖A‖2F + ‖‖Ax‖22 − E ‖Ax‖22‖p)1/2 (triangle inequality)

≤ √p · ‖A‖F +
√
p · ‖‖Ax‖22 − E ‖Ax‖22‖1/2p

.
√
p · ‖A‖F +

√
p · ‖x>A>Ax′‖1/2p (Lemma 1.1.11)

.
√
p · ‖A‖F + p3/4 · ‖‖A>Ax‖2‖1/2p (Khintchine)

.
√
p · ‖A‖F + p3/4 · ‖A‖1/2 · ‖‖Ax‖2‖1/2p (1.15)

Writing E = ‖‖Ax‖2‖1/2p and comparing Eq. (1.13) and Eq. (1.15), we see that for some constant
C > 0,

E2 − Cp1/4‖A‖1/2E − C‖A‖F ≤ 0.

Thus E must be smaller than the larger root of the above quadratic equation, implying our desired
upper bound on E2.

Remark 1.1.13. The “square root trick” in the proof of the Hanson-Wright inequality above is
quite handy and can be used to prove several moment inequalities (for example, it can be used to
prove Bernstein inequality). As far as I am aware, the trick was first used in a work of Rudelson
[Rud99] on operator norms of certain random matrices.

Remark 1.1.14. We could have upper bounded Eq. (1.14) by

√
p · ‖A‖F +

√
p · ‖‖Ax‖22 − E ‖Ax‖22‖

1/2
p/2

by the triangle inequality. Now notice we have bounded the pth central moment of a symmetric
quadratic form Eq. (1.12) by the p/2th moment also of a symmetric quadratic form. Writing p = 2k,
this observation leads to a proof by induction on k, which was the approach used in [DKN10].

We have stated a moment version of the Hanson-Wright inequality, but we show now this is
equivalent to a tail bound. Below we prove a lemma which lets us freely obtain tail bounds from
moment bounds and vice versa (often we prove a moment bound and later invoke a tail bound, or
vice versa, without even mentioning any justification).

Lemma 1.1.15. Let Z be a scalar random variable. Consider the following statements:

(1a) There exists σ > 0 s.t. ∀p ≥ 1, ‖Z‖p ≤ C1σ
√
p.

(1b) There exists σ > 0 s.t. ∀λ > 0, P(|Z| > λ) ≤ C2e
−C′2λ2/σ2

.

(2a) There exists K > 0 s.t. ∀p ≥ 1, ‖Z‖p ≤ C3Kp.



1.1. PROBABILITY REVIEW 11

(2b) There exists K > 0 s.t. ∀ λ > 0, P(|Z| > λ) ≤ C4e
−C′4λ/K .

(3a) There exist σ,K > 0 s.t. ∀ p ≥ 1, ‖Z‖p ≤ C5(σ
√
p+Kp).

(3b) There exist σ,K > 0 s.t. ∀ λ > 0, P(|Z| > λ) ≤ C6(e−C
′
6λ

2/σ2
+ e−C

′
6λ/K).

Then 1a is equivalent to 1b, 2a is equivalent to 2b, and 3a is equivalent to 3b, where the constants
Ci, C

′
i in each case change by at most some absolute constant factor.

Proof. We will show only that 1a is equivalent to 1b; the other cases are argued identically.
To show that 1a implies 1b, by Markov’s inequality

P(Z > λ) ≤ λ−p · E |Z|p ≤
(
C2

1σ
2

λ2p

)p/2
.

Statement 1b follows by choosing p = max{1, 2C2
1λ

2/σ2}.
To show that 1b implies 1a, by integration by parts we have

E |Z|p =

∫ ∞
0

pxp−1 P(|Z| > λ)dλ ≤ 2C2p ·
∫ ∞

0
pxp−1 · e−C′2λ2/σ2

dλ.

The integral on the right hand side is exactly the pth moment of a gaussian random variable with
mean zero and variance σ′2 = σ2/(2C ′2). Statement 1a then follows since such a gaussian has
p-norm Θ(σ′

√
p).

Corollary 1.1.16. For σ1, . . . , σn independent Rademachers and A ∈ Rn×n, for all λ > 0

P
σ
(|σ>Aσ − Eσ>Aσ| > λ) . e−Cλ

2/‖A‖2F ) + e−Cλ/‖A‖.

Proof. Combine Theorem 1.1.12 with item (3b) of Lemma 1.1.15.

As mentioned in Remark 1.1.13, we now show that the “square root trick” can also be used to
prove Bernstein’s inequality.

Theorem 1.1.17 (Bernstein’s inequality; moment form). Let X1, . . . , Xn be independent, each
bounded in magnitude by K almost surely. Write X :=

∑n
i=1Xi and define σ2 := V ar[X]. Then

∀p ≥ 1, ‖X − EX‖p . σ
√
p+Kp.

Proof. Define Z = Xi − EXi. Then

‖Z‖p = ‖Z − EZ‖p
≤ 2‖

∑
i

σiZi‖p (Lemma 1.1.10)

≤ 2
√
p‖(
∑
i

Z2
i )1/2‖p (Khintchine)

= 2
√
p‖
∑
i

Z2
i ‖

1/2
p/2 (1.16)

≤ 2
√
p‖
∑
i

Z2
i ‖1/2p

≤ 2
√
p(E

∑
i

Z2
i )1/2 + 2

√
p‖
∑
i

Z2
i − E

∑
i

Z2
i ‖1/2p (triangle inequality)



12 CHAPTER 1. INTRODUCTION

= 2σ
√
p+ 2

√
p‖
∑
i

Z2
i − E

∑
i

Z2
i ‖1/2p

≤ 2σ
√
p+ 4

√
p‖
∑
i

σiZ
2
i ‖1/2p (Lemma 1.1.10)

≤ 2σ
√
p+ 4p3/4‖(

∑
i

Z4
i )1/2‖1/2p (Khintchine)

≤ 2σ
√
p+ 4p3/4

√
K‖(

∑
i

Z2
i )1/2‖1/2p

= 2σ
√
p+ 4p3/4

√
K‖

∑
i

Z2
i ‖

1/4
p/2 (1.17)

Define E := ‖
∑

i Z
2
i ‖

1/4
p/2. Then comparing Eqs. (1.16) and (1.17), we find

2
√
pE2 ≤ 2σ

√
p+ 4p3/4

√
KE.

Rearranging gives
E2 − 2p1/4

√
KE − σ ≤ 0.

Thus E must be smaller than the larger root of the associated quadratic, i.e. E ≤ (2p1/4
√
K +√

4K
√
p+ 4σ)/2 . p1/4

√
K+
√
σ. The claim then follows since we have ‖X−EX‖p ≤ 2

√
pE2.

Corollary 1.1.18 (Bernstein’s inequality; tail form). Let X1, . . . , Xn be independent, each bounded
in magnitude by K almost surely. Write X :=

∑n
i=1Xi and define σ2 := V ar[X]. Then

∀λ > 0,P(|X − EX| > λ) . e−Cλ
2/σ2

+ e−Cλ/K

for some universal constant C > 0.

Proof. Apply the equivalence of (3a) and (3b) of Lemma 1.1.15 to Theorem 1.1.17.



Chapter 2

Counting Problems

2.1 Approximate counting

In the following, we discuss a problem first studied in [Mor78].

Problem. Our algorithm must monitor a sequence of events, then at any given time output (an
estimate of) the number of events thus far. More formally, this is a data structure maintaining a
single integer n and supporting the following two operations:

• update(): increment n by 1

• query(): output (an estimate of) n

Before any operations are performed, it is assumed that n starts at 0. Of course a trivial algorithm
maintains n using O(log n) bits of memory (a counter). Our goal is to use much less space than
this. It is not too hard to prove that it is impossible to solve this problem exactly using o(log n)
bits of space. Thus we would like to answer query() with some estimate ñ of n satisfying

P(|ñ− n| > εn) < δ, (2.1)

for some 0 < ε, δ < 1 that are given to the algorithm up front.
The algorithm of Morris provides such an estimator for some ε, δ that we will analyze shortly.

The algorithm works as follows:

1. Initialize X ← 0.

2. For each update, increment X with probability 1
2X

.

3. For a query, output ñ = 2X − 1.

Intuitively, the variable X is attempting to store a value that is ≈ log2 n. Before giving a
rigorous analysis in Subsection 2.1.1, we first give a probability review.

2.1.1 Analysis of Morris’ algorithm

Let Xn denote X in Morris’ algorithm after n updates.

Claim 2.1.1.
E 2Xn = n+ 1.

13



14 CHAPTER 2. COUNTING PROBLEMS

Proof. We prove by induction on n. The base case is clear, so we now show the inductive step.
We have

E 2Xn+1 =
∞∑
j=0

P(Xn = j) · E(2Xn+1 |Xn = j)

=

∞∑
j=0

P(Xn = j) · (2j(1− 1

2j
) +

1

2j
· 2j+1)

=

∞∑
j=0

P(Xn = j)2j +
∑
j

P(Xn = j)

= E 2Xn + 1

= (n+ 1) + 1

(2.2)

It is now clear why we output our estimate of n as ñ = 2X − 1: it is an unbiased estimator of
n. In order to show Eq. (2.1) however, we will also control on the variance of our estimator. This
is because, by Chebyshev’s inequality,

P(|ñ− n| > εn) <
1

ε2n2
· E(ñ− n)2 =

1

ε2n2
E(2X − 1− n)2. (2.3)

When we expand the above square, we find that we need to control E 22Xn . The proof of the
following claim is by induction, similar to that of Claim 2.1.1.

Claim 2.1.2.

E(22Xn) =
3

2
n2 +

3

2
n+ 1. (2.4)

This implies E(ñ− n)2 = (1/2)n2 − (1/2)n− 1 < (1/2)n2, and thus

P(|ñ− n| > εn) <
1

ε2n2
· n

2

2
=

1

2ε2
, (2.5)

which is not particularly meaningful since the right hand side is only better than 1/2 failure
probability when ε ≥ 1 (which means the estimator may very well always be 0!).

2.1.2 Morris+

To decrease the failure probability of Morris’ basic algorithm, we instantiate s independent copies of
Morris’ algorithm and average their outputs. That is, we obtain independent estimators ñ1, . . . , ñs
from independent instantiations of Morris’ algorithm, and our output to a query is

ñ =
1

s

s∑
i=1

ñi

Since each ñi is an unbiased estimator of n, so is their average. Furthermore, since variances of
independent random variables add, and multiplying a random variable by some constant c = 1/s
causes the variance to be multiplied by c2, the right hand side of (Eq. (2.5)) becomes

P(|ñ− n| > εn) <
1

2sε2
< δ

for s > 1/(2ε2δ) = Θ(1/(ε2δ)).



2.1. APPROXIMATE COUNTING 15

2.1.3 Morris++

It turns out there is a simple technique (which we will see often) to reduce the dependence on the
failure probability δ from 1/δ to log(1/δ). The technique is as follows.

We run t instantiations of Morris+, each with failure probability 1
3 . Thus, for each one, s =

Θ(1/ε2). We then output the median estimate from all the s Morris+ instantiations. Note that
the expected number of Morris+ instantiations that succeed is at least 2t/3. For the median to
be a bad estimate, at most half the Morris+ instantiations can succeed, implying the number of
succeeding instantiations deviated from its expectation by at least t/6. Define

Yi =

{
1, if the ith Morris+ instantiation succeeds.

0, otherwise.
(2.6)

Then by the Hoeffding bound,

P

(∑
i

Yi ≤
t

2

)
≤ P

(∑
i

Yi − E
∑
i

Yi| < −t/6

)
< e−2(1/6)2t ≤ δ (2.7)

for t ≥ d18 ln(1/δ)e.

Overall space complexity. When we unravel Morris++, it is running a total of st = Θ(lg(1/δ)/ε2)
instantiations of the basic Morris algorithm. Now note that once any given Morris counterX reaches
the value lg(stn/δ), the probabilitye that it is incremented at any given moment is at most δ/(nst).
Thus the probability that it is incremented at all in the next n increments is at most δ/(st). Thus
by a union bound, with probability 1 − δ none of the st basic Morris instantiations ever stores a
value larger than lg(stn/δ), which takes O(lg lg(stn/δ)) bits. Thus the total space complexity is,
with probability 1− δ, at most

O(ε−2 lg(1/δ)(lg lg(n/(εδ)))).

In particular, for constant ε, δ (say each 1/100), the total space complexity is O(lg lg n) with
constant probability. This is exponentially better than the log n space achieved by storing a counter!

Remark 2.1.3. As we will continue to see, designing some random process and associated unbiased
estimator with bounded variance for some desired statistic that can be maintained and computed in
small space is a common strategy. One can then take the median of means of several copies of this
basic structure to then obtain 1 + ε-approximation with success probability 1− δ. In the particular
case of approximate counting, this led to a space blow-up of Θ(log(1/δ)/ε2) though it is possible to
do better by a more tailored approach. Specifically, Morris instead suggests adjusting the increment
probability from 1/2X to 1/(1 +α)X for small α then estimating n as ñ := ((1 +α)X − 1)/α. This
makes intuitive sense: if we increment with probability 1.0X , then we have a simple deterministic
counter, which has zero variance but poor memory performance. Meanwhile if we increment with
probability 0.5X then the memory usage is reduced at the cost of higher variance. One may
then intuit that if incrementing with probability 1/(1 + α)X , space usage increases while variance
decreases as α ↓ 0, which is indeed the case. By bounding variance and applying Chebyshev’s
inequality, it is possible to show that α = Θ(ε2δ) leads to (1 + ε)-approximation with probability
1− δ while using space O(log(1/ε) + log log n+ log(1/δ)) with high probability [Mor78, Fla85]. In
fact, it is even possible to improve the analysis to show O(log(1/ε) + log log n+ log log(1/δ)) space
suffices via a different argument, and to show that this bound is optimal [NY20].



16 CHAPTER 2. COUNTING PROBLEMS

2.2 Distinct elements

We next consider another counting problem: the count distinct or distinct elements problem, also
known as the F0 problem, defined as follows. We are given a stream of integers i1, . . . , im ∈ [n]
where [n] denotes the set {1, 2, . . . , n}. We would like to output the number of distinct elements
seen in the stream. As with Morris’ approximate counting algorithm, our goal will be to minimize
our space consumption.1

There are two straightforward solutions as follows:

1. Solution 1: keep a bit array of length n, initialized to all zeroes. Set the ith bit to 1 whenever
i is seen in the stream (n bits of memory).

2. Solution 2: Store the whole stream in memory explicitly (m dlog2 ne bits of memory).

We can thus solve the problem exactly using min{n,m dlog2 ne} bits of memory. In order to the
reduce the space, we will instead settle for computing some value t̃ s.t. P(|t− t̃| > εt) < δ, where t
denotes the number of distinct elements in the stream. The first work to show that this is possible
using small memory (assuming oracle access to certain random hash functions) is that of Flajolet
and Martin (FM) [FM85].

2.2.1 Idealized FM algorithm: freely stored randomness

We first discuss the following idealized algorithm:

1. Pick a random function h : [n]→ [0, 1]

2. Maintain counter X = mini∈stream h(i)

3. Output 1/X − 1

Note this algorithm really is idealized, since we cannot afford to store a truly random such function
h in o(n) bits (first, because there are n independent random variables (h(i))ni=1, and second because
its outputs are real numbers).

Intuition. The value X stored by the algorithm is a random variable that is the minimum of t
i.i.d Unif(0, 1) random variables. One can then compute the expectation of what the minimum is,
as a function of t, and invert that function in hopes of obtaining (a good approximation to) t.

Claim 2.2.1. EX = 1
t+1 .

Proof.

EX =

∫ ∞
0

P(X > λ)dλ

=

∫ ∞
0

P(∀i ∈ stream, h(i) > λ)dλ

=

∫ ∞
0

t∏
r=1

P(h(ir) > λ)dλ

1The reason for the name “F0” is that if one defines a histogram x ∈ Rn with xi being the number of occurrences
of i in the stream, then one can define the pth moment Fp as

∑
i x

p
i . The number of distinct elements is then the

limit of the pth moment for p→ 0.



2.2. DISTINCT ELEMENTS 17

=

∫ 1

0
(1− λ)tdλ

=
1

t+ 1

We will also need the following claim in order to execute Chebyshev’s inequality to bound the
failure probability in our final algorithm.

Claim 2.2.2. EX2 = 2
(t+1)(t+2)

Proof.

EX2 =

∫ 1

0
P(X2 > λ)dλ

=

∫ 1

0
P(X >

√
λ)dλ

=

∫ 1

0
(1−

√
λ)tdλ

= 2

∫ 1

0
ut(1− u)du (substitution u = 1−

√
λ)

=
2

(t+ 1)(t+ 2)

This gives V ar[X] = EX2 − (EX)2 = t
(t+1)2(t+2)

, or the simpler V ar[X] < (EX)2 = 1
(t+1)2 .

FM+. To obtain an algorithm providing a randomized approximate guarantee, just as with
Morris+ we form an algorithm FM+ which averages together the outputs from s independent
instantiations of the basic FM algorithm.

1. Instantiate s =
⌈
1/(ε2δ)

⌉
FMs independently, FM1,. . . ,FMs.

2. Let Xi be the output of FMi.

3. Upon a query, output 1/Z − 1, where Z = 1
s

∑
iXi.

We have that E(Z) = 1
t+1 , and V ar(Z) = 1

s
t

(t+1)2(t+2)
< 1

s(t+1)2 .

Claim 2.2.3. P(|Z − 1
t+1 | >

ε
t+1) < δ

Proof. We apply Chebyshev’s inequality.

P(|Z − 1

t+ 1
| > ε

t+ 1
) <

(t+ 1)2

ε2

1

s(t+ 1)2
= η

Claim 2.2.4. P(|( 1
Z − 1)− t| > O(ε)t) < η



18 CHAPTER 2. COUNTING PROBLEMS

Proof. If t = 0 (the empty stream), the claim is trivial. Otherwise, by the previous claim, with
probability 1− η we have

1

(1± ε) 1
t+1

− 1 = (1±O(ε))(t+ 1)− 1 = (1±O(ε))t±O(ε) = (1±O(ε))t

FM++. To obtain our final algorithm, again as with Morris++ we take the median output from
multiple independent instantiations of FM+.

1. Instantiate q = d18 ln(1/δ)e independent copies of FM+ with η = 1/3.

2. Output the median t̂ of {1/Zj − 1}qj=1 where Zj is the output of the jth copy of FM+.

Claim 2.2.5. P(|t̂− t| > εt) < δ

Proof. Let

Yj =

{
1 if |(1/Zj − 1)− t| ≤ εt
0 else

and put Y =
∑q

j=1 Yj . We have EY > 2q/3 by our choice of η. The probability we seek to bound
is equivalent to the probability that the median fails, i.e. at least half of the FM+ estimates have
Yj = 0. In other words,

q∑
j=1

Yj ≤ q/2

We then get that

P(
∑

Yj < q/2) ≤ P(Y − EY < −q/6) (2.8)

Then by a Hoeffding bound, the above is at most

e−2( 1
6

)2q ≤ δ

as desired.

The final space required, ignoring h, is that required to store O( lg(1/δ)
ε2

) real numbers since
O(lg(1/δ)) copies of FM+ are instantiated, each averaging O(1/ε2) copies of FM. Each single FM
just stores a single number (the minimum hash ever seen).

2.2.2 A non-idealized algorithm: KMV

We next describe a modified algorithm for F0-estimation which does not assume access to a truly
random hash function. Before we continue, we first discuss k-wise independent hash families.

k-wise independent hash families.

Definition 2.2.6. A family H of functions mapping [a] to [b] is k-wise independent if ∀j1, . . . , jk ∈
[b] and ∀ distinct i1, . . . , ik ∈ [a],

P
h∈H

(h(i1) = j1 ∧ . . . ∧ h(ik) = jk) = 1/bk



2.2. DISTINCT ELEMENTS 19

Example. The set H of all functions [a] → [b] is k-wise independent for every k. |H| = ba so
h ∈ H is representable in a lg b bits.

Example. Let a = b = q for q = pr a prime power and define Hpoly to be the set of all degree
≤ k − 1 polynomials with coefficients in Fq, the finite field of order q. |Hpoly| = qk so h ∈ H is
representable in k lg p = k lg a bits.

Claim 2.2.7 ([WC79]). Hpoly is k-wise independent.

Proof. Given ((ir, jr))
k
r=1, there is exactly one degree at most k − 1 polynomial h over Fq with

h(ir) = jr for r = 1, . . . , k, via interpolation. Thus the probability

P
h∈H

(h(i1) = j1 ∧ . . . ∧ h(ik) = jk)

exactly equals 1/|Hpoly| = 1/pk = 1/bk.

We now present an algorithm of [BYJK+02], later known as the “KMV algorithm” (for “k
minimum values”). We will assume 1/ε2 < n, since we will be shooting for a space bound that is
at least 1/ε2, and there is always a trivial solution for exact F0 computation using n bits. We also
assume, without loss of generality, that ε < 1/2.

The algorithm is quite similar to the idealized FM algorithm, but rather than maintain only
the smallest hash evaluation, we maintain the k smallest hash evaluations for some appropriately
chosen k ∈ Θ(1/ε2). The intuition is that the smallest hash evaluation leads us to an estimator
with high variance (all it takes is for one item to hash to something really tiny, which will throw
off our estimator). Meanwhile, if we consider the kth smallest hash evaluation for some large k,
then the variance should be smaller since a single item (or small number of items) cannot throw
off our statistic by having a wildly small or big hash value. This makes some intuitive sense since
the median (k = t/2) is the most robust order statistic to outliers. The tradeoff of course is that
to keep track of the kth smallest hash value we will use space that grows with k, as we will keep
track of all k bottom hash values seen.

Specifically, the KMV algorithm chooses a hash function h : [n] → [M ] for M = n3 from a
2-wise independent hash family (the idea here is to discretize [0, 1] into multiples of 1/M). We pick
k =

⌈
24/ε2

⌉
. We keep track in memory of the k smallest hash evaluations. If at the time of the

query we have seen less than k distinct hash values, then we just output the number of distinct
hash values seen. Otherwise, if X is the kth smallest then we output our estimate of t = F0 as
t̃ = kM/X.

For some intuition: note if we had t ≥ k independent hash values in [0, 1], we expect the kth
smallest value v to be k/(t + 1) (namely, we expect k equally spaced values between 0 and 1).
Thus a reasonable estimate for t would be k/v − 1. If t ≤ k then our output is exactly correct as
long as the distinct elements are perfectly hashed, and indeed this happens with high probability
since all of [n] is perfectly hashed with large probability by our large choice of M . Otherwise, for
t ≥ k � 1/ε2, we expect k/v > 1/ε2, and thus neglecting to subtract the 1 and simply outputting
k/v gives the same answer up to a 1 + ε factor. Since in our actual algorithm we discretize [0, 1]
into multiples of 1/M , our value X is actually representing Mv, and thus we output kM/X.

We now provide a more formal analysis. Note that our hash function h is only 2-wise indepen-
dent! We would like to say that with good probability,

(1− ε)t ≤ t̃ ≤ (1 + ε)t.



20 CHAPTER 2. COUNTING PROBLEMS

We consider the two bad events that t̃ is too big or too small, and show that each happens with
probability at most 1/6, and thus the probability that either happens is at most 1/3 by the union
bound.

First let us consider the case that t̃ > (1 + ε)t. Since t̃ = kM/X, i.e. X = kM/t̃, this can only
happen if at least k distinct indices in the stream hashed to a value smaller than kM/((1 + ε)t).
Let Yi be an indicator random variable for the event that the ith distinct integer in the stream
hashed to a value below kM/((1 + ε)t), and let Y denote

∑t
i=1 Yi. Then EYi < k/((1 + ε)t) and

thus

EY < k/(1 + ε).

We also have V ar[Yi] < EY 2
i = EYi < k/((1 + ε)t), and thus

V ar[Y ] < k/(1 + ε)

as well (note V ar[Y ] =
∑

i V ar[Yi] since the Yi are pairwise independent). Thus by Chebyshev’s
inequality,

P(Y ≥ k) ≤ P(|Y − EY | > k(1− 1/(1 + ε)) <
k

1 + ε
· (1 + ε)2

k2ε2
=

1 + ε

ε2k
< 1/6.

We can similarly bound the probablity that t̃ < (1− ε)t. This can only happen if there weren’t
enough distinct indices in the stream that hashed to small values under h. Specifically, let Zi be
an indicator random variable for the event that the ith distinct integer in the stream hashed to a
value below kM/((1− ε)t), and define Z =

∑
i Zi. Then t̃ < (1− ε)t can only occur if Z < k. But

we have k/((1−ε)t) ≥ EZi > k/((1−ε)t)−1/M ≥ (1+ε)k/t−1/M (the 1/M is due to rounding).
We note 1/M < εk/(4t) since ε > 1/

√
n and t < n. Thus k/((1 − ε)t) ≥ EZi > (1 + 3ε/4)k/t,

implying

k/(1− ε) ≥ EZ > (1 + 3ε/4)k

and also since Z is a sum of pairwise independent Bernoullis, again

V ar[Z] ≤ EZ ≤ k/(1− ε).

Thus by Chebyshev’s inequality,

P(Z < k) < P(|Z − EZ| > (3/4)εk) <
k

1− ε
· 16

9ε2k2
<

16

9(1− ε)
· 1

ε2k
< 1/6,

as desired.

Other comments. It is known, via a different algorithm, that for constant failure probability
space O(1/ε2 + log n) is achievable [KNW10b], and furthermore this is optimal [AMS99, Woo04]
(also see [TSJ08]). An algorithm that is more commonly used in practice is HyperLogLog [FEFGM07].
Although it assumes access to a truly random hash function, and asymptotically uses a factor lg lg n
more space than the algorithm of [KNW10b], its performance in practice is superior. For a histor-
ical discussion of the development of HyperLogLog and other distinct elements and approximate
counting algorithms (e.g. Morris), see [Lum18]. For arbitrary, potentially subconstant failure prob-
ability δ, the optimal bound is Θ(ε−2 log(1/δ) + log n); the upper bound was shown in [B la20], and
the lower bound in [AMS99, JW13].



2.2. DISTINCT ELEMENTS 21

2.2.3 Another algorithm via geometric sampling

We now describe another approach to designing a small-space algorithm for the distinct elements
problem. This algorithm will use more memory than the KMV algorithm, but it serves the pedagogi-
cal value of introducing a technique that is common in the design of streaming algorithms: geometric
sampling. The main idea of geometric sampling is to pick a hash function h : [n] → {0, . . . , log n}
from a 2-wise independent family with elements in the hash function’s range having geometri-
cally decreasing probabilities: P(h(i) = j) = 2−(j+1) for j < log n (and P(h(i) = log n) = 1/n)2.
This hash function h then naturally partitions the stream into log n + 1 different “substreams”
S0, . . . , Slogn, where Sr is the stream restricted to {i : h(i) = r}. Each Sr is then fed into some
separate data structure Dr. In the specific case of distinct elements, Dr is a data structure that
solves the following promise problem (for some parameter k): if t ≤ k, then the number of distinct
elements must be output exactly; otherwise, the data structure may fail in an arbitrary way. This
problem has a trivial deterministic solution using O(k log n) bits of memory: write down the indices
of the first k distinct elements seen (and if a (k+ 1)st element is seen, simply write Error). We first
show that such an algorithm (with k = k1 a constant) can give a constant-factor approximation
to t := F0 with good probability. We then run the same algorithm in parallel with some larger
k = k2 = C/ε2. Let then r∗ be such that t/2r

∗
= Θ(1/ε2), which we can calculate based on our

constant-factor approximation to t (in the case that t� 1/ε2 there is no such r∗, but this case can
be solved exactly by keeping track of an extra data structure D′ with k = k2 that ignores h and
processes all stream updates). In expectation, the number of distinct elements F0(r∗) at level r∗ is
t/2r

∗
, and the variance is upper bounded by this quantity as well. Thus by Chebyshev’s inequality,

F0(r∗) = t/2r
∗ ± O(

√
t/2r∗) = (1 ± ε)t/2r∗ with large constant probability. By choosing C large

enough, we can also guarantee that (1 + ε)t/2r
∗ ≤ k2 so that we typically output F0(2r

∗
) correctly,

exactly. Then multiplying the output of Dr∗ by 2r
∗

gives (1± ε)t with large probability.

A constant-factor approximation. The data structure is as mentioned above with k1 = 1.
Given an integer i in the stream, we feed it to the data structure Dh(i). Then to obtain a constant-

factor approximation, we return 2` for ` being the largest value of r ∈ {0, . . . , log n} such that
Dr.query() 6= 0 (even if Dr reports an error, we count that as not returning 0). Note that ` is a
random variable, as it depends on h.

In the analysis below, we define L := log2 t.

Lemma 2.2.8. P(` > L+ 4) ≤ 1/8.

Proof. For any r we have Eh F0(r) = t/2r. Thus

P(` > L+ 4) = P(∃r > L+ 4 : F0(r) > 0)

≤
logn∑

r=dL+4e

P(F0(r) > 0) (union bound)

=

logn∑
r=dL+4e

P(F0(r) ≥ 1) (F0(r) is an integer)

=

logn∑
r=dL+4e

P(F0(r) ≥ 2r

t
· EF0(r))

2One way to implement such h is to select h′ : [n]→ [n] from a pairwise independent family and defining h(i) to
be the index of the least significant bit of h′(i).



22 CHAPTER 2. COUNTING PROBLEMS

≤
logn∑

r=dL+4e

t

2r

<
∞∑
q=4

2−q

=
1

8
.

Lemma 2.2.9. P(F0(dL− 4e) = 0) < 1/8.

Proof. Write q = F0(dL− 4e) so that E q = t/2dL−4e, and V ar[q] < E q by pairwise independence
of h. Then

P(q = 0) ≤ P(|q − E q| ≥ E q)

< P(|q − E q| ≥
√
E q
√
V ar[q]

≤ 1

E q
(Chebyshev’s inequality),

which is less than 1/8 by the definition of L.

Lemma 2.2.8 tells us that it is unlikely that ` > log2 +4 (and thus unlikely that our estimator
is bigger than 16t). Lemma 2.2.9 implies it is unlikely that ` < dL− 4e. Thus by a union bound,
we have the following result.

Lemma 2.2.10. 2` ∈ [ 1
16 t, 16t] with probability at least 3/4.

Refining to (1 + ε)-approximation. We run the constant-factor approximation algorithm in
parallel, so that at any point we can query it to obtain t̂ := 2`. We henceforth condition on the
good event that t̂ ∈ [ 1

16 t, 16t].
Define k2 =

⌈
512/ε2 + 68/ε

⌉
. We first check whether t ≤ k2 by checking D′; if so, we return

D′.query(), which is guaranteed to equal t exactly with probability 1. Otherwise, as mentioned in
Subsection 2.2.3 we define r∗ such that t/2r

∗
= Θ(1/ε2); specifically we set r∗ =

⌈
log2(ε2t̂/32)

⌉
.

Then due to rounding from the ceiling function and also by our guarantees on t̂, we have 1/ε2 <
t/2r

∗ ≤ 512/ε2. We also have V arh[F0(r∗)] ≤ t/2r
∗
, and thus by Chebyshev’s inequality F0(r∗) =

t/2r
∗ ± 3

√
512/ε = t/2r

∗ ± 68/ε = (1 ± 68ε)t/2r
∗

with probability at least 8/9. In this case, (1)
scaling up F0(r∗) by 2r

∗
gives a 1 + O(ε) approximation as desired (which can be made 1 + ε by

running this algorithm with ε′ = ε/68, and (2) we can know F0(r∗) exactly (in order to scale it up)
since F0(r∗) ≤ k2 by our choice of k2. In summary we have:

Theorem 2.2.11. There is an algorithm for (1 + ε)-approximation of F0 with probability 1 − δ
using O(ε−2 log2 n log(1/δ)) bits of memory.

Proof. The constant factor approximation suceeds with probability at least 3/4. Conditioned on it
succeeding, our refinement to 1 + ε approximation succeeds with probabliity at least 8/9. Thus our
overall success probablity is at least 3/4 · 8/9 = 2/3, which can be amplified to 1 − δ in the usual
manner by returning the median of Θ(log(1/δ)) copies of this basic data structure.

We now analyze the memory to obtain success probability 2/3; for probability 1 − δ, this
increases by a multiplicative log(1/δ) factor. Recall we run two algorithms in parallel, with k1 = 1



2.3. QUANTILES 23

and k2 = Θ(1/ε)2; we focus on the latter since its memory consumption is strictly more. Storing
the hash function h requires only O(log n) bits. D′ takes an additional O(k2 log n) = O(ε−2 log n)
bits of memory. Similarly, each Di takes O(k2 log n) bits of memory and there are log2 n+ 1 such
structure, yielding the desired space bound in total.

Remark 2.2.12. One advantage of this algorithm over the KMV algorithm is that its update and
query times are faster; in fact in the so-called “transdichotomous word RAM model” (where the
word size is at least log n bits) [FW93], these times are O(1) (for success probability 2/3), whereas
the natural implementation of KMV would use a heap and have Θ(log(1/ε)) update time. To
see this, we can store the distinct elements in D′ and each Dr using a dynamic dictionary data
structure such as hashing with chaining, which supports O(1) worst case expected update time.
We also know which Dr to update since we can compute h(i) for each i in constant time. For the
constant-factor approximation algorithm, since k1 = 1 we need not store the identity of the seen
item in Dr; we can simply mark a bit 0 or 1 as to whether any item has ever been seen. As there are
log n such bits, we can store them in a single machine word x. We can find the largest non-empty
Dr by computing the index of the least significant set bit of x, which can be done in O(1) time in
the word RAM model [Bro93]. For the parallel data structure with larger k2 = Θ(1/ε2), updates
are similarly fast; for queries, we only query the size of a single Dr (namely Dr∗), which takes
constant time. Thus overall, queries are worst case O(1) time, and updates are O(1) expected time
(the bottleneck being the use of dynamic dictionary in each Dr).

2.3 Quantiles

In this problem we see a stream of comparable items y1, y2, . . . , yn, in some arbitrary order. For
example, xi could be the response time to serve request i in some system. We will use x1, . . . , xn
throughout this section to denote the yi in sorted order: x1 < x2 < · · · < xn. Without loss of
generality we can assume no two items are equal, since any algorithm can interpret yi in the stream
as (yi, i) and use lexicographic ordering. We are also given up front some ε ∈ [0, 1) at the beginning
of the stream. At query time we would then like to support three (really two) types of queries:

• rank(x): if r is such that xr < x ≤ xr+1 (i.e. it is the true rank of r), then return r ± εn.

• select(r): return any item whose rank in the sorted order is r ± εn.

• quantile(φ): this is syntactic sugar for select(φn).

Going back to the example, a typical use of such a data structure is to answer quantile queries
for φ = 0.999 say, when monitoring the performance of a system to ensure that 99.9% of user
queries are responded to quickly. We remark that the assumption that the yi are distinct is not
necessary but just simplifies the remaining discussion in this section; without that assumption,
one could leave the requirement of rank(x) unchanged (any r satisfying the given inequalities is
acceptable), and for select(r), if xa = xa+1 = · · · = xb = x, then it is acceptable to return x as long
as [a, b] ∩ [r − εn, r + εn] 6= ∅.

The state-of-the-art algorithms for this problem are as follows. By a “comparison-based” sketch,
we mean a sketch that works in the model where items come from an infinite universe in which
between any two values x < y there exists a z such that x < z < y, and the memory of the
algorithm can be divided into M1 and M2 (see [CV20]). Here M1 is a subset of items seen, and M2

is some extra storage that is only allowed to keep track of results of comparisons between stream
items and those items in M1. When processing a new stream update x, we are allowed to compare



24 CHAPTER 2. COUNTING PROBLEMS

x with all elements of M1, possibly store some of those results in M2, then also possibly include
x in M1 and remove some current items from M1. All decisions made are determined only by the
results of comparisons.

• Deterministic, not comparison-based. If the input values are known to come from a
finite universe {0, . . . , U−1}, the q-digest sketch [SBAS04] solves quantiles sing O(ε−1 logU)
words of memory.

• Deterministic, comparison-based. The GK sketch [GK01] uses O(ε−1 log(εn)) words of
memory, which was recently shown to be best possible for any deterministic comparison-based
algorithm [CV20].

• Randomized, comparison-based. The KLL sketch [KLL16] when given parameter δ at
the beginning of the stream uses O(ε−1 log log(1/δ)) words of memory and succeeds with
probability 1− δ. That is

∀ queries q,P(KLL answers q correctly) ≥ 1− δ

If one wants the “all-quantiles” guarantee, i.e.

P(∀ queries q, KLL answers q correctly) ≥ 1− δ,

then this is accomplished using O(ε−1 log log(1/(εδ))) words of memory. For achieving the
first guarantee, they also prove that their bound is optimal up to a constant factor (see also
[CV20] for a strengthening of the lower bound statement).

Open: Is q-digest optimal?
Open: Can one do better than the KLL sketch by not being comparison-based?
Open: The GK analysis is complex; can one match its performance via a simpler approach?

For more details of these and several other sketches, see the survey by Greenwald and Khanna
[GK16]. As that survey was written in 2016 though, some of the more recent results on quantiles are
not covered, e.g. the KLL sketch [KLL16] and a faster version using the same memory [ILL+19], an
optimal lower bound for deterministic comparison-based sketches [CV20], and some recent works
on relative-error quantile sketches (see [CKL+20] and the references therein). Some of these more
recent developments appear in Chapter 4 of the upcoming book of Cormode and Yi [CY20].

In the following sections, we will cover the following sketches: (1) the q-digest sketch, (2) the
MRL sketch [MRL98], which is deterministic and comparison-based but achieves the worse memory
bound O(ε−1 log2(εn)) when compared to the GK sketch, and (3) KLL.

2.3.1 q-digest

In this setting, where items have values in {0, . . . , U − 1}, we will allow for items of the stream to
have the same value and not do the reduction yi 7→ (yi, i) mentioned in Section 2.3. The main idea
of this data structure is to conceptually imagine a perfect binary tree whose leaves correspond to the
values 0, 1, . . . , U − 1. For every node v in this tree, we have a counter c[v]. Each node represents
an interval of values, from its leftmost leaf descendant to its rightmost. The q-digest structure
will store the names of all v with c[v] 6= 0, together with their c[] values. Ideally we would like
that c[v] is zero for all internal nodes of the tree, and equals the number of occurrences of v in
the stream for every leaf node v. Doing so is equivalent to simply storing a histogram: for each
x ∈ {0, . . . , U −1}, we keep track of the number of stream elements equal to x. An exact histogram



2.3. QUANTILES 25

would of course allow us to answer all rank/select queries exactly (with ε = 0), but unfortunately
could be too memory-intensive if too many distinct values are seen in the stream (which could be
as large as min{n,U} values). To remedy this, q-digest occasionally merges two sibling nodes
into their parent, by zeroing out their c[] values after adding them to their common parent. This
naturally saves memory by zeroing out nodes, at the expense of worsening accuracy: for counts
stored at an internal nodes v, we cannot be sure what precise values the items contributing to those
counts had within v’s subtree.

In what follows we assume U is a power of 2, and we write L := log2 U . This is without loss of
generality, as if not we could simply round U upward and increase it by at most a factor of 2. In
the perfect binary tree, we refer to the sibling of a non-root node v as s[v], and its parent as p[v].
For a non-leaf v, we use left[v], right[v] to denote its left and right children, respectively.

q-digest sketch:
initialization // ε ∈ (0, 1) is given

1. n← 0
2. S ← ∅ // set of (v, c[v]) pairs with c[v] 6= 0; note c[v] = 0 for v not tracked by S
3. K := d6L/εe

insert(i) // see item i in the stream
1. n← n + 1
2. if leaf node i is in S:
3. c[i]← c[i] + 1
4. else:
5. S ← S ∪ {(i, 1)}
6. if |S| > K:
7. compress()

compress() // the root has depth 0, and leaves are at depth L

1. for ` = L,L− 1, . . . , 1:
2. for each node v in S at level `:
3. if c[p[v]] + c[v] + c[s[v]] ≤ εn/L:
4. c[p[v]]← c[p[v]] + c[v] + c[s[v]]
5. c[v]← 0
6. c[s[v]]← 0
7. adjust S as needed (remove v and s[v], and associate p[v] with its new c[p[v]] value)

rank(x) // let t[v] denote the the sum of all c[u] values of nodes u in v’s subtree

1. // below we express x =
∑L−1
i=0 xi2

i in binary
2. v← root
3. ans← c[v]
4. for i = L− 1, L− 2, . . . , 0:
5. if xi = 1:
6. ans← ans + t[left[v]]
7. v← right[v]
8. else:
9. v← left[v]

10. ans← ans + c[v]
11. return ans

select(r)

1. A← c[root], v← root, x← 0
2. for i = L− 1, L− 2, . . . , 0:
3. if A + t[left[v]] ≥ r − 1:
4. v← left[v]
5. else:
6. A← A + c[left[v]]
7. v← right[v]
8. x← x + 2i

9. A← A + c[v]
10. return x

Figure 2.1: Pseudocode for q-digest; bottom-up implementation.



26 CHAPTER 2. COUNTING PROBLEMS

Fig. 2.1 provides a bottom-up implementation of q-digest (bottom-up since updates directly
affect the leaves, and only percolate upward later when compress is called). S can be implemented
as any dynamic dictionary data structure. A top-down recursive implementation of both insert and
compress is also possible; see [CY20, Chapter 4] for details.

To answer queries, we let t[v] denote the sum of all c[] values of nodes in its subtree, including
its own c[v] value. When answering rank(x), we return the sum of all c[] values of leaves to the
left of and including x, as well as their ancestors. We can accomplish this by traversing the unique
root to x path in the tree and keeping a running sum (see Fig. 2.1). To answer select(r), we would
like to find the unique value x ∈ {0, . . . , U − 1} such that the sum of all c[] values of leaves to
the left of and including x, and their ancestors, is at least r− 1, whereas the same computation for
x−1 would be strictly less than r−1. We find such x via a depth-first search (DFS) from the root.
We keep a running sum A that approximates the number of stream elements that are strictly less
than the entire range covered by the current node v, and we return the leaf that our DFS lands;
see Fig. 2.1 for details.

Lemma 2.3.1. q-digest answers both rank and select correctly, i.e. with error ±εn for each.

Proof. The key observation is that any element x in the stream contributes to the c[] value of
exactly one node: either x’s leaf node, or one of its ancestors. For the calculation of rank(x), note
that any z ≤ x either increments the counter of some ancestor of x, or of some node in the left
subtree of an ancestor of x, and thus it is counted. For z > x, it either increments the counter
of some node in the right subtree of an ancestor of x (in which case it is not counted when we
calculate rank(x)), or it increments the counter of an ancestor of x (in which case it is counted).
But x has only L ancestors, and each one has a counter value of at most εn/L by compress, so
the total error introduced by larger z is at most L · (εn/L) = εn. Similar reasoning implies the
correctness of select, which we leave as an exercise to the reader.

The following lemma motivates our choice of K in the pseudocode, as it means we only have to
call compress after every at least roughly K/2 updates. Thus the amortized runtime to compress is
improved compared with running it after every insertion (which would still be correct and improve
the space by a factor of two).

Lemma 2.3.2. After any call to compress, the resulting S will have size at most 3L/ε+ 1.

Proof. Consider S after compression. Then for any node v tracked by S which is not the root,

c[p[v]] + c[v] + c[s[v]] > εn/L.

Summing over such v,

3n ≥
∑
v∈S

v not the root

c[p[v]] + c[v] + c[s[v]] > (|S| − 1)εn/L, (2.9)

where the LHS holds since each stream element contributes to exactly one c[v] counter, and each
c[v] appears at most three times in the above sum (it is the sibling of at most one node in S, and
the parent of at most one node in S). Rearranging gives |S| ≤ 3L/ε+ 1, as desired.

Remark 2.3.3. There are several valid decision choices in an implementation of q-digest. For
example, it is correct to call compress after every insertion, though that would increase runtime
unnecessarily. Alternatively, one could percolate up merges into the parent starting from node i
until reaching either the root or a parent whose c[] value would be too large to allow the merge.



2.3. QUANTILES 27

Doing so helps deamortize the data structure to prevent frequent calls to compress (every ≈ K/2
updates), but at the same time, note that n is changing: it increases after every insertion. Thus
capacities of nodes to hold more in their counters is continuously increasing: previous parents which
rejected merges may later allow them due to increased capacity. To ensure that |S| always stays
small, one could then call compress every time n doubles, say. The RHS of Eq. (2.9) in between
calls to compress would still be at least (|S| − 1)εn/(2L), implying that the data structure always
has size at most 6L/ε+ 1 even between calls to compress.

2.3.2 MRL

MRL sketch:
initialization // ε ∈ (0, 1) and the final stream length n are given

1. k := ε−1dlog(εn)e+ 1, rounded up to the nearest even integer
2. L := dlog(n/k)e
3. // the below Aj arrays are 1-indexed
4. initialize empty “compactor” arrays A0, . . . , AL each of size k, initialized to have all null entries

insert(i) // see item i in the stream
1. insert i into A0 // i.e. replace the first non-null entry in A0 with i
2. j ← 0
3. while Aj has size k: // i.e. no non-null entries
4. sort(Aj)
5. insert Aj[1], Aj[3], . . . , Aj[n-1] into Aj+1

6. set all entries of Aj to null
7. j ← j + 1

rank(x)
1. ans← 0
2. for j = 0, 1, . . . , L:
3. for each item z in Aj :
4. if z < x:
5. ans← ans + 2j

6. return ans

select(r)
1. B← array containing (z, 2j) for every z ∈ Aj , over all j ∈ {0, . . . , L}
2. sort B lexicographically
3. i← smallest index such that

∑i
j=1 B[j].second ≥ r

4. return B[i].first

Figure 2.2: Pseudocode for MRL sketch.

The MRL data structure of [MRL98] is also deterministic, but is comparison-based and therefore
does not need to assume knowledge of where the universe comes from. It does however need to
know the length n of the final stream in advance3. The space complexity will be O(ε−1 log2(εn)).
Though we have not yet spoken about mergeability of sketches, we briefly do so now to state an
open problem related to this concept. Roughly speaking, a sketching algorithm is fully mergeable
if given two sketches S1 and S2 created from inputs D1 and D2, a sketch S of D := D1 t D2

can be created with no degradation in quality of error or failure probability, and satisfying the
same efficiency constraints as S1, S2. Furthermore, this mergeability condition should hold in an
arbitrary merge tree of several sketches (i.e. it should be possible to merge a previous merger of
sketches with another merger of sketches, etc.). The MRL sketch unfortunately does not satisfy
this property because, as we will soon see, the data structure sets an internal parameter k based on
n at the beginning of the sketching procedure. Thus if k1 is set based on n1 := |D1| and k2 based

3The more space-efficient GK sketch does not need to know n in advance. Also, for the MRL sketch it suffices to
only know an upper bound N on the final stream length, and the memory bounds will then have n replaced with N .



28 CHAPTER 2. COUNTING PROBLEMS

on n2 := |D2|, it is not clear how to combine the skeches with different k parameters into a new
sketch with k3 = n1 + n2 without increasing the error ε guaranteed by the original two sketches.

Open: Does there exist a deterministic, comparison-based quantiles sketch using o(n) memory
which is fully mergeable? It is conjectured in [ACH+13] that the answer is no.

The main component in the MRL sketch is a compactor, which has a single parameter k that
is a positive even integer. A compactor stores anywhere between 0 and k items. When it is full,
i.e. has k items, it “compacts”: this amounts to sorting its elements into x1 < x2 < · · · < xk
then outputting the odd-indexed elements x1, x3, x5, . . . , xk−1. In the MRL sketch compactors are
chained together, so that the output of one compactor is inserted into the next compactor, possibly
causing a chain reaction; see Fig. 2.2.

x

Figure 2.3: Illustrative figure for understanding error introduced during compaction.

A picture to keep in mind for how compaction introduces error into rank queries is drawn in
Fig. 2.3. Imagine the query element is x (the red dot), and let the black dots be the elements of
the stream currently living in one of the compactors with k = 8, arranged in sorted order. In truth,
3 of these elements are less than x. But after compaction and moving the four boxed elements
into the next level, we will see that two of the boxed elements are less than x and thus think that
4 original elements were less than x. Being off by one in this count introduces an error of 2j for
compactions performed at level j. Note also that if x had even rank in the sorted order amongst
these elements, no error would be introduced at all. Thus the error introduced for any x during a
compaction at level j can be expressed as ηx2j , where ηx ∈ {0, 1} depends on the parity of x’s rank
amongst the items that were compacted. Thus for any x, querying the rank of x has additive error

E(x) :=

L−1∑
j=0

mj∑
i=1

ηx,j,i2
j , (2.10)

where mj is the number of compactions performed by Aj . Since there are only n items in the
stream, there are at most n/2j items that are ever inserted into Aj . A compaction clears out k
elements at a time, and thus mj ≤ n/(k2j). Therefore

E(x) ≤
L−1∑
j=0

mj∑
i=1

2j

≤
L−1∑
j=0

n

k2j
2j

=
n

k
· L (2.11)

To ensure Eq. (2.11) is at most εn, we must set k so that L/k = dlog(n/k)e/k ≤ ε. That is,
k ≥ ε−1dlog(n/k)e. This inequality is satisfied by our choice of k.

Theorem 2.3.4. The MRL sketch uses space O(k log(n/k)) = O(ε−1 log2(εn)).



2.3. QUANTILES 29

2.3.3 KLL

KLL is a randomized sketch that, for any fixed rank query, succeeds with probability 1 − δ. Its
space usage is O(ε−1 log log(1/δ)) words. As mentioned in Section 2.3, it can also provide the
“all-quantiles” guarantee using O(ε−1 log log(1/(εδ)), in which case select can be implemented by
performing rank queries on every stored item.

The starting point of KLL is a randomized improvement to the MRL sketch given in [ACH+13].
This randomized MRL sketch is identical to the MRL sketch, except that rather than a compactor
always output the odd-indexed elements, it uniformly at random decides to either output the odd-
or even-indexed elements in the sorted order. Thus, again looking at Fig. 2.3, we see that the
error introduced when estimating rank(x) by any compaction at level j can be expressed as ησ2j ,
where η ∈ {0, 1}, and σ ∈ {−1, 1} is uniformly random. Then we can rewrite the error term in our
estimate for rank(x) as

E(x) :=
L−1∑
j=0

mj∑
i=1

ηx,j,iσj,i2
j , (2.12)

This error random variable precisely fits the setup of Khintchine’s inequality (see Theorem 1.1.7),
where the vector “x” in the statement of the inequality has entries (ηx,j,i2

j)j,i. Then we see that

‖x‖22 ≤
L−1∑
j=0

mj2
2j ≤ n

k
· 2L ≤ 2

(n
k

)2
. (2.13)

Plugging into Khintchine’s inequality, we therefore have

P(|E(x)| > εn) ≤ 2e−ε
2n2· k

2

2n2 , (2.14)

which is at most δ for k = dε−1
√

2 log(1/δ)e. Note also a further benefit: since k does not depend
on n, we do not need to know n in advance. Although the number of compactors does depend on
n, we can simply start off with only one compactor and allocate new compactors as they become
needed. We thus have the following theorem.

Theorem 2.3.5. There is a randomized, comparison-based sketch for quantiles with additive error
±εn and failure probability at most δ using O(ε−1

√
log(1/δ) log(εn/

√
log(1/δ))) words of memory.

This algorithm does not need to know the stream length n in advance.

KLL then makes further optimizations to improve the space complexity. The first optimization
is to not make all the compactors have equal size. Rather, the last compactor AL will have (the
largest) size k. Then compactor AL−j will have size equal to the maximum of 2 and ≈ (2/3)jk. Since
we do not know n a priori and thus do not know how many compactors we will need, this is achieved
by making our compactors have dynamically changing sizes. For example, initially we will only
have one compactor A0 with capacity k. Then when a compaction finally happens, we will create
A1 with capacity k and shrink the capacity of A0 to its new, smaller capacity. It can be shown that
the number of compactors at any given time is still log(n/k) +O(1). Furthermore, the number of
compactions mj at level j is still at most n/(k2j). Similar computations to Eqs. (2.13) and (2.14)
then imply k = O(ε−1

√
log(1/δ)) still suffices, but since our compactor sizes are geometrically

decreasing (down to a minimum size of 2), our space is improved. In particular, we have the
following theorem, which improves Theorem 2.3.5 by making the log n term additive instead of
multiplicative.



30 CHAPTER 2. COUNTING PROBLEMS

Theorem 2.3.6. There is a randomized, comparison-based sketch for quantiles with additive error
±εn and failure probability at most δ using O(ε−1

√
log(1/δ)+log(εn/

√
log(1/δ))) words of memory.

This algorithm does not need to know the stream length n in advance.

We only sketch the remaining improvements to the KLL sketch. The first is to observe that
since we enforce that all capacities must be at least 2 and otherwise compactor capacities decay
geometrically, only the top O(log k) compactors have size more than 2, and the bottom T =
L−O(log k) compactors all have size exactly 2. One can view the action of these bottom compactors
then in unison: from the input stream, elements come in, and the output then of compactor AT−1

is a uniformly random element amongst 2T input stream elements. Thus, rather than spend O(T )
space implementing these T elements, we can implement a sampler using O(1) words of memory.
This improves the overall space to O(k) down from O(k + log(n/k)). The next idea is to make all
the top s compactors have size k, and only compactors AL−j for j > s have size ≈ (2/3)jk. Then
the space is O(sk), but re-examining the error term:

|E(x)| =

∣∣∣∣∣∣
L−1∑
j=0

mj∑
i=1

ηx,j,iσj,i2
j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
L−s∑
j=0

mj∑
i=1

ηx,j,iσj,i2
j

∣∣∣∣∣∣+

∣∣∣∣∣∣
L−1∑

j=L−s+1

mj2
j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
L−s∑
j=0

mj∑
i=1

ηx,j,iσj,i2
j

︸ ︷︷ ︸
α

∣∣∣∣∣∣∣∣∣∣
+

ns

k︸︷︷︸
β

Then for the α term, a simpler computation to Eq. (2.13) yields a bound on ‖x‖22 of 2(n/k)2 · 2−s.
We can then apply Khintchine as above to obtain failure probability

P(|α| > εn/2) ≤ 2e−ε
2n2· k

2

8n2 ·2s .

If s = dln ln(1/δ))e, then the above is at most δ as long as k ≥
√

8/ε. On the other hand, we
must also ensure β ≤ εn/2, which requires k > s/ε. Thus overall, we can afford to set k =
O(ε−1 log log(1/δ)), which leads to a space bound of ks = O(ε−1(log log(1/δ))2).

The final optimization to achieve the improved space bound is to observe that the bottleneck
above comes from the top s compactors. We can instead replace them by an optimal deterministic
sketch, such as the GK sketch. Thus outputs from AL−s are fed into the GK sketch and can be
viewed as all having the same weight 2L−s+1. When we add in the GK rank query output into our
rank query outputs, we thus multiply its output by 2L−s+1 first. We thus overall have the following
theorem.

Theorem 2.3.7. There is a randomized, comparison-based sketch for quantiles with additive error
±εn and failure probability at most δ using O(ε−1 log log(1/δ)) words of memory. This algorithm
does not need to know the stream length n in advance.

Remark 2.3.8. Although Theorem 2.3.7 gives an optimal memory bound for this problem amongst
comparison-based solutions, it is not known to be fully mergeable (see the definition sketch in
Subsection 2.3.2). This is because the GK sketch it uses in the last optimization is not known to be
fully mergeable. Without this optimization though, KLL is fully mergeable. Thus, the best fully
mergeable sketch we have uses space O(ε−1(log log(1/δ))2); see [KLL16] for details.



Chapter 3

Lower Bounds

In this chapter we discuss common techniques for proving lower bounds for the size of a sketch to
solve some problem, or for the memory used by a streaming algorithm to solve some task. There
are two main techniques common in this area: compression-based arguments, and communication
complexity.1 We discuss these both in the below sections, together with example applications.

3.1 Compression-based arguments

3.1.1 Distinct elements

Recall in Section 2.2 we discussed computing the number of distinct elements in a data stream. In
that problem we saw a stream x1, . . . , xm of (possibly non-distinct) elements in a stream, each in
{1, . . . , n}. We developed randomized, approximate algorithm: that is, if the true number of distinct
elements is t, the algorithms we discussed achieving non-trivially low memory used randomness to
output a number t̃ satisfying

P(|t− t̃| > εt) < δ.

for some ε, δ ∈ (0, 1). One could ask: were both randomization and approximation necessary? Could
we have a randomized exact algorithm that fails with some small probability δ? Or a deterministic
approximate algorithm? It turns out that the answer to both of these questions is no [AMS99].
Before proving so, we first show that the strongest possible guarantee, i.e. an algorithm that is both
exact and deterministic, requires Ω(n) bits of memory. The proof we give will be the first example of
a compression argument. Applied to streaming algorithms, essentially such proofs fit the following
template: if there exists an algorithm that uses very little memory (say S bits), then there exists
an injection (we often refer to as the encoding) Enc : A → {0, 1}g(S). Therefore g(S) ≥ log2A,
which depending on g, may imply some lower bound on S in terms of logA. Such arguments are
called compression arguments because they show that a streaming algorithm existed that was too
good to be true (uses too little memory), then we would be able to compress a big set, i.e. A, into
a smaller one.

Theorem 3.1.1. Suppose A is a deterministic streaming algorithm that computes the number of
distinct elements exactly. Then A uses at least n bits of memory.

Proof. We show that the existence of A implies the existence of an injection Enc : {0, 1}n → {0, 1}S .
Therefore S ≥ n. The injection is defined as follows. Given some x ∈ {0, 1}n, we artificially create

1These techniques are not actually disjoint; some communication complexity bounds are ultimately proven via
compression-based arguments.

31



32 CHAPTER 3. LOWER BOUNDS

a stream that contains in some fixed (say sorted) order all i such that xi = 1. We then run the
algorithm A on it, then define Enc(x) to be the memory contents of A.

To show that Enc(x) is an injection, we show that we can invert it (or “Decode”) via some
inverse function Dec. If M is an S bit string, then Dec(M) is defined as follows. We initialize A
with M as its memory. We then execute the following:

s← A.query() // support size of x, i.e. |{i : xi 6= 0}|
x← (0, 0, . . . , 0)
for i = 1 . . . n:

A.update(i) // append i to the stream
r ← A.query() // will either be s or s + 1
if r = s: // Encoder must have included i, so it wasn’t a new distinct element

xi ← 1
s← r

return x

We next show that no deterministic exact algorithm exists using o(n) bits of memory. Before
doing so though, we introduce the concept of an error-correcting code.

Definition 3.1.2. An error-correcting code is a set C ⊂ [q]t. Here q is referred to as the alphabet
size and ` as the block length. The Hamming distance between two elements of [q]t is the number
of entries where they differ, i.e. ∆(x, y) := |{i : xi 6= yi}|. The relative Hamming distance is
δ(x, y) = ∆(x, y)/`. The distance of the code is minc,c′∈C ∆(c, c′) and the relative distance of the
code is minc,c′∈C δ(c, c

′).

There are entire books and courses devoted to error-correcting codes (and more generally, the
topic of “coding theory”), so we do not attempt to do the entire field justice here. One of the main
reasons codes are useful objects of study is the following observation, which follows by the triangle
inequality.

Observation 3.1.3. If C has distance D, then the open Hamming balls of radii D/2 about all
c ∈ C are disjoint.

In other words, if an adversary takes a codeword c ∈ C then changes fewer than D/2 of its
entries to produce a new c̃ ∈ [q]`, then another party can later uniquely “decode” c̃ to obtain c.
That is, there is a unique c ∈ C that could have been modified in this way to obtain c̃. This
observation is why such C are called error-correcting codes: one can imagine that a user wishes to
transmit an m-bit message M for m = blog2 |C|c to some other user(s). If all users agree ahead of
time on some injection Enc : {0, 1}m → C, then the sender can transmit Enc(M). The channel of
transmission may then have noise that corrupts what was sent (e.g. scratches on a CD, or static on
a phone line), but as long as the channel corrupts fewer than D/2 entries of the encoded message,
the recipients can uniquely decode to recover M precisely.

One other parameter typically of interest when discussing codes is the rate of the code. Essen-
tially the rate measures the following: if the original messages and the codewords are over the same
alphabet [q], then by what multiplicative factor do messages blow up after encoding. More precisely,
rate is the inverse of this quantity: C has enough codewords to support encoding length-logq |C|
messages with alphabet [q]. Meanwhile, these messages are being blown up to length t. Thus the
rate is defined as (logq |C|)/`. Rates are numbers between 0 and 1 and are a form of measuring the



3.1. COMPRESSION-BASED ARGUMENTS 33

efficiency of the code from a redundacy perspective: the closer the rate is to 1, the more efficient it
is.

For our purposes in proving sketching lower bounds in this chapter, we do not need to explicitly
describe any code, but rather just show that good codes exist. We will do so via the probabilistic
method.2

Theorem 3.1.4. For any integers q, n > 1, there exists a code C with |C| = n and block length
` = O(q log n) with relative distance 1− 6/q.

Proof. We pick ci ∈ [q]` uniformly at random, and do so independently for i = 1, 2, . . . , n. We then
wish to show that C = {ci}ni=1 has the desired property with positive probability. Look at some
particular pair c 6= c′ ∈ C. Let Yk for k = 1, 2, . . . , t be an indicator random variable for the event
ck = c′k. Then the Yk are independent Bernoulli with parameter 1/q. Then Y =

∑`
k=1 Yk equals

`−∆(c, c′) and has EY = `/q. By the upper tail of the Chernoff bound in the regime λ > 2e− 1
(see Eq. (1.4) and Remark 1.1.5),

P(Y > 6`/q) < exp(−Ω(`/q)),

which is less than 1/n2 by choice of t. Thus by a union bound over all choices of c 6= c′ ∈ C, the
probability that there exists such a pair with ` −∆(c, c′) > 6`/q is strictly less than 1. Thus, the
desired code exists.

Corollary 3.1.5. For any integer n > 0 and any integers `, q > 1 such that n = q`, there exists a
subset Bq,` of {0, 1}n satisfying the following properties:

1. Every c ∈ Bq,` has support size `, i.e. |{i : ci 6= 0}| = `.

2. For c 6= c′ ∈ Bq,`, |{i : ci = c′i}| ≤ 6`/q.

3. |Bq,`| = exp(Ω(`/q)).

Proof. The corollary follows from Theorem 3.1.4 by writing codewords in unary. That is, for each
c ∈ C ⊂ [q]`, we convert it into an element of {0, 1}q` by replacing each entry ci in c with an element
of {0, 1}q (by putting a 1 in the cith position and 0’s in the other q − 1 positions).

Now we are ready to present a lower bound against deterministic but approximate algorithms
for the distinct elements problem.

Theorem 3.1.6. Suppose A is a deterministic streaming algorithm that always outputs a value t̃
when queried such that t ≤ t̃ ≤ 1.9t, where t is the number of distinct elements. Then A uses at
least cn bits of memory for some constant c > 0.

Proof. We show that the existence of A implies the existence of an injection Enc : Bq,` → {0, 1}S
for q = 100 and ` = n/q, where Bq,` is as in Corollary 3.1.5. Therefore S ≥ log |Bq,`| = Ω(n). The
injection is defined as follows. Given some x ∈ Bq,`, we artificially create a stream that contains
in some fixed (say sorted) order all i such that xi = 1. We then run the algorithm A on it, then
define Enc(x) to be the memory contents of A.

To show that Enc(x) is an injection, we show that we can invert it (or “Decode”) as in the
proof of Theorem 3.1.1. If M is an S bit string, then Dec(M) is defined as follows:

2Briefly, this method works as follows: if one wants to show that an object with some property P exists, then pick
an object randomly from some distribution and show that the picked object has property P with nonzero probability.



34 CHAPTER 3. LOWER BOUNDS

for c ∈ Bq,t:
A.init(M) // initialize A’s memory to M
for i = 1, 2, . . . , n:

if ci = 1:
A.update(i)

if A.query() ≤ 1.9`
return x

Each time through the for loop, A’s memory is reset to the contents immediately after the
encoder processed x. Thus the exact number of distinct elements is `, so the reported value to a
query will be at most 1.9` if c = x. Meanwhile if c 6= x, thinking of c, x as sets (containing the
elements corresponding to 1 bits), item (2) of Corollary 3.1.5 implies the true number of distinct
elements is |c∪ x| = |c|+ |x| − |c∩ x| > 2`− 6`/q = 1.94`. Thus the output of query will not be at
most 1.9`.

The 1.1-approximation in Theorem 3.1.6 can be changed to any approximation factor strictly
less than 2 by adjusting q. It is even possible to show that α-approximation to the number of
distinct elements for any constant α > 1 requires Ω(n/α) bits of memory deterministically [CK16],
though we will not present that argument here.

We next show that exact, randomized algorithms must also use Ω(n) bits of memory.

Theorem 3.1.7. Suppose A is a randomized streaming algorithm that outputs the exact number
of distinct elements with success probability at least 2/3 for the last query in any fixed sequence of
stream updates and queries. Then A uses at least cn bits of memory for some constant c > 0.

Proof. We first remark that the existence of A using space S and succeeding with probability 2/3
implies the existence of A′ that outputs the exact right answer with failure probability at most 10−6

and uses space O(S): A′ simply runs O(1) copies of A in parallel with independent randomness
and returns the median query result across all parallel runs as its own query response. The claimed
failure probability holds via the Chernoff-Hoeffding bound. We thus assume that A in fact fails
with probability at most 10−6.

Consider again the set Bq,` from Corollary 3.1.5 for q = 100. We will show the existence of such
A implies the existence of an injection Enc : B → {0, 1}S for some B ⊆ Bq,` with |B| ≥ |Bq,`|/2.
Thus S ≥ log |B| = log |Bq,`| − 1 = Ω(n).

We define Enc′ identically as Enc in the proof of Theorem 3.1.1, and Dec′ is similar, though
instead of returning x we return the closest element (in Hamming) distance from Bq,` to x. This is
not yet the desired injection and inverse because they are randomized procedures and not actual
functions, since A is a randomized algorithm. For fixed x ∈ Bq,`, let x′ be the (random) vector
recovered by Dec′. Let Yx,i be an indicator random variable for the event that the ith bit was
recovered incorrectly, i.e. x′i 6= xi. Let Yx =

∑n
i=1 Yx,i. Then EYx ≤ n/106 by linearity of

expectation. Let Zx be an indicator random variable for the event Yx > 2n/106. Then P(Zx =
1) < 1/2 by Markov’s inequality. Thus by linearity of expectation,

E
∑
x∈Bq,`

Zx ≥
1

2
· Bq,`. (3.1)

This expectation is over the randomness of A. One can view any randomized algorithm A(x)
as simply a deterministic algorithm A(x, r), where r is the (random) string that sources A with



3.1. COMPRESSION-BASED ARGUMENTS 35

randomness. Eq. (3.1) implies that there exists a fixed string r∗ such that Dec′(Enc′(x)) returns
x for at least half the x ∈ Bq,` when using r∗ as the source of randomness for A. We denote this
set of x where the scheme suceeds as B. We then define Enc,Dec as Enc′,Dec′ but using r∗ as the
random string.

3.1.2 Quantiles

Recall in the quantiles problem, we would like to answer ε-approximate rank/select queries after
seeing a stream of comparable items. As mentioned, Cormode and Yi showed that any deterministic,
comparison-based algorithm for this problem requires Ω(ε−1 log(εn)) words of memory, showing
that the GK sketch is optimal. We will not show their proof here, but rather a much simpler lower
bound.

Theorem 3.1.8. Suppose ε ∈ (10/n, 1). Then any deterministic, comparison-based algorithm for
ε-approximate rank/select requires at least Ω(1/ε) words of memory.

Proof. Suppose the algorithm stores S elements of the stream. Including the smallest and largest
elements of the stream would increase the space to at most S + 2. If S + 2 ≥ n/2, then are done.
Otherwise, call these elements x1 < x2 < · · ·xS+2. Now any other element in the stream other
than those stored is in the interval (xi, xi+1) for some unique i; there are at most S − 1 intervals
of this form. Thus these at most S − 1 intervals contain at least n − S − 2 items of the stream,
so at least one interval must contain at least (n − S − 2)/(S − 1) ≥ 2n/S stream items. Every
item in this interval has identical comparisons with all the stored elements and thus all have the
same response to a rank query. Meanwhile, the smallest and largest elements in this interval have
a difference of at least 2n/S− 1 in rank, which can only be at most 2εn if S = Ω(1/ε). Noting that
for two numbers (their ranks) differing by more than ` there is integer within `/2 of both finishes
the proof.

We next show a stronger lower bound using a compression-based argument similar to that for
distinct elements, based on error-correcting codes. The following lower bounds shows an Ω(1/ε)
lower bound even for randomized algorithms, and even when the elements come from a bounded
universe {1, . . . , U}.

Theorem 3.1.9. In what follows, C, c > 0 are some universal constants. Let ε ∈ (0, 1) be given,
and suppose n,U > 1 are given integers with 1/ε > C ·max{1/n, 1/U}. . Suppose A is a randomized
streaming algorithm for cε-approximate rank/select with success probability at least 2/3 for the last
query in any fixed sequence of stream updates and queries, over streams of length n where elements
are in the universe {1, . . . , U}. Then A uses at least Ω(ε−1 log(εU)) bits of memory.

Proof. As in the proof of Theorem 3.1.6, we can assume wlog that A actually succeeds with prob-
ability at least 7/8 while only increasing its space usage S by at most a constant factor.

Consider all sequences S of 1/ε elements of [q] for q = cεU for some c ∈ (0, 1). Given some
sequence S, we treat it as a length-(1/ε) string over the alphabet [q] and encode it with a constant-
rate error-correcting code with encoding function Enc that can recover from a 1/4-fraction of errors
(so the relative distance is more than 1/2); the length of Enc(S) is 1/ε′ = c−1/ε. The existence
of such a code is guaranteed by Theorem 3.1.4 if c is a small enough constant. Now take the ith
(0-indexed) symbol, call it x, of Enc(S) and change it to i · q + x for all i, to get a new string S′

over alphabet [U ] with U = q/ε′. Now run A on S′ with error parameter ε′/3 after replicating
each letter of S′ ε′n times (so the stream length is n) to get a quantiles data structure. Given the
length of S′ and our choice of error parameter, over A’s randomness we can recover each symbol



36 CHAPTER 3. LOWER BOUNDS

of S′ (and thus Enc(S)) with probability 7/8 since S′ is a sorted string and a quantile query for
the middle of a repeated character segment of length ε′n has a unique correct answer (namely, the
repeated character). Thus, the probability we recover fewer than 3/4 of the letters is at most 1/2.
Thus, there exists a fixed random string to source A’s randomness which allows A to correctly
recover a 3/4-fraction of the letters of Enc(S) (and thus decode to recover S) for at least half the
possible sequences S. In other words, if the space (in bits) A uses is s, we have an injection from a
collection of size at least (1/2)(cεU)1/ε to bitsrings of length s, implying s = Ω(ε−1 log(εU)).

3.2 Communication Complexity

Another common method to prove lower bounds is via reductions from problems in communication
complexity (though the methods to prove that the communication problems being reduced from are
themselves often compression-based). One can imagine representing solving a a streaming problem
with ` updates as a communication game, in which there are ` players A1, . . . , A` where player Ai
holds update i. One can imagine that if the players had a streaming algorithm, player A1 could
run A on the first update, send A’s memory contents as a message to player A2, who can then
run A initialized with that memory on the second update, etc., until player A` can finally run
A on their update before calling A.query(). In this way, the memory complexity of solving some
streaming problem is captured by the maximum message length required to solve this corresponding
communication problem. This translation is not perfect however, since in the communication model
we allow players to send arbitrary functions of their input and received message whereas a streaming
algorithm must be an algorithm, i.e. it cannot compute uncomputable functions to determine how
to update its memory state. For example, nothing prohibits a player in a communication game
from deciding what message to send the next player based on the solution to some instance of the
halting problem, or some other undecidable problem; its decision on what to send (or player A`’s
decision on what to output) is allowed to be the result of an arbitrarily complex function. As we
will see in this section, it is often the case that we can prove optimal memory lower bounds for
streaming problems by considering only 2 players, call them Alice and Bob. For many problems we
can imagine that Alice’s input corresponds to say the first half of stream updates, and Bob holds
the second half, and their task is to compute some function on the concatenated stream. Even
though Alice and Bob have quite a lot of power (they each know half the entire stream!), it turns
out that for many streaming problems solving this associated 2-player communication problem is
just as hard.

Various models of communication games. Before we continue, we describe a few different
types of communication games studied. We describe all these models in the 2-player setting where
Alice has some x ∈ X , Bob has some input y ∈ Y, and they would like to send messages back and
forth to compute f(x, y). Specifically Alice sends a message, to which Bob responds, to which Alice
may respond, etc., until one player declares they know the answer and outputs f(x, y). We note that
this back-and-forth communication corresponds to multiple passes over the input for a streaming
algorithm: for example if Alice talks, then Bob talks, then Alice talks again, this corresponds to the
algorithm making two passes over the input stream. For a communication protocol Π and inputs
x, y, we define Π(x, y) to be the transcript of all messages sent, and |Π(x, y)| as the total number
of bits of all messages in this transcript.

• Deterministic complexity. As the name suggests, Alice and Bob act completely determin-
istically. The complexity of a protocol is then maxx,y |Π(x, y)|. We then define D(f) as the
minimum over all correct communication protocols Π of maxx,y |Π(x, y)|.



3.2. COMMUNICATION COMPLEXITY 37

• Randomized complexity. This is again a worst-case notion of complexity (where x, y are
worst-case inputs), but where Alice and Bob act randomly and must only fail with probability

at most δ. We define Rpubδ (f) as the minimum over all protocols that are correct with
probability at least 2/3 on any input of maxx,y |Π(x, y)|. The pub here denotes that the
source of randomness is an infinitely long public random string in the sky that Alice and Bob
both have read access to. Rprivδ (f) is similarly defined but where Alice and Bob each have
their own private source of randomness, which the other player does not know (unless it is

communicated, which incurs cost). Clearly Rprivδ (f) ≥ Rpubδ (f), since in the public coin model
we can simulate a private coin protocol by having Alice pretend the even-indexed public bits
are her private bits, and Bob pretending the odd-indexed public bits are his.

• Distributional complexity. In this model µ is some distribution over (X ,Y), and we
assume the inputs are not worst case but rather (x, y) ∼ µ. Then Dµ

δ (f) denotes the minimum
complexity of a protocol that succeeds with probability at least 1 − δ on (x, y) drawn from
µ. Without loss of generality we can assume the protocol is deterministic (since for any
randomized protocol, its probability of correctness is the average probability of correctness
over its source of randomness, and therefore there must be a fixed random string to source it
with that performs at least as well as this average).

We also sometimes consider the “one-way model” in which Alice only sends a single message to
Bob, and Bob must then output the answer (Bob never speaks to Alice). For one way complexities,

we use the notation D→(f), Rpriv,→δ (f), Rpub,→δ (f), Dµ,→
δ (f).

We now state a few theorems known in the communication complexity literature without proof.
The interested reader can find proofs in the textbook of Kushilevitz and Nisan [KN97].

Theorem 3.2.1 (Yao’s minimax principle). For any f and any δ ∈ (0, 1), Rpubδ (f) = supµD
µ
δ (f).

Theorem 3.2.2. For any f and fixed constant δ ∈ (0, 1/2), Rprivδ = Ω(log(D(f))).

Theorem 3.2.3 (Newman’s theorem). For any f : {0, 1}n × {0, 1}n → {0, 1} and ε, δ ∈ (0, 1),

Rprivε+δ ≤ R
pub
δ (f) +O(log n+ log(1/ε)).

3.2.1 Equality

The equality function Equalityn : {0, 1}n×{0, 1}n → {0, 1} is defined by Equalityn(x, y) = 1 iff
x = y. The following known theorem states that amongst deterministic communication protocols,
the trivial protocol of Alice sending Bob her entire input is best possible.

Theorem 3.2.4. For all n ≥ 1, D(Equalityn) ≥ n.

The above theorem implies Theorem 3.1.1 as a corollary.

Corollary 3.2.5. Suppose A is a deterministic streaming algorithm that computes the number of
distinct elements exactly. Then A uses at least n bits of memory.

Proof. Given such an A using S bits of memory, we define a communication protocol using S bits
of communication for Equality. Define X = {i : xi = 1} and similarly for Y . Alice runs A on
the stream consisting of all i ∈ X then sends A’s memory contents to Bob as a message. Bob then
runs A.query() and immediately outputs 0 if the result is not equal to |Y |. If he does not reject, he
continues running A from the memory state sent on all i in Y then runs A.query() again. He then
outputs 1 iff this second query equals |Y |. Note the output of this second query is |X ∪ Y |, which
is strictly larger than |Y | iff Y 6= X since X,Y are the same size.



38 CHAPTER 3. LOWER BOUNDS

It is interesting to note that Equalityn is extremal for both Theorems 3.2.2 and 3.2.3.

Theorem 3.2.6. Rpriv1/3 (Equalityn) = O(log n) and Rpub1/3(Equalityn) = O(1)

Proof. For the private coin model, Alice and Bob each treat their inputs as binary representations
of integers in the range {0, . . . , 2n−1}. Alice then uses private randomness to pick a uniformly
random prime p in the interval [1, 10n3] and sends to Bob the two numbers p and x mod p. Bob
then outputs 1 iff x ≡ y mod p. The total communication is O(log n) bits since p and x mod p are
each at most n3 and thus requires 3 log2 n bits each to transmit. As for correctness, this protocol
clearly is correct if x = y. If they are different, then Bob errs iff p divides |x−y|. But |x−y| < 2n and
thus has at most n prime divisors (note if N has prime divisors p1, . . . , pk then N ≥

∏k
j=1 pj ≥ 2k,

implying k ≤ log2N). Meanwhile, the interval [1, 10n3] has at least (1−o(1))10n3/ ln(10n3) primes
by the prime number theorem, and thus the probability that the chosen p is one of these divisors
is at most n/((1− o(1))10n3/ ln(10n3)) < 1/3.

For the public coin model, Alice and Bob use public randomness to agree on two independent
uniformly random strings r, r′ ∈ {0, 1}n. Alice then sends Bob 〈r, x〉 mod 2 and 〈r′, x〉 mod 2
(two bits). Bob then outputs 1 iff 〈r, x〉 = 〈r, y〉 mod 2 and 〈r′, x〉 = 〈r′, y〉 mod 2. Again,
this protocol succeeds with probability 1 if x = y. If they are not equal, then they succeed iff
〈x− y, r〉 = 0 mod 2. But since they are not equal, x− y has at least one non-zero entry (x− y)i.
Then 〈x− y, r〉 = (xi − yi)ri +

∑
j 6=i(xj − yj)rj . For any conditioning of this sum, (x− y)ri either

flips the sum or keeps it the same modulo 2 with equal probability. Thus P(〈x− y, r〉 = 0) = 1/2.
Thus Bob fails with probability exactly (1/2)2 = 1/4 < 1/3.

3.2.2 Disjointness

The disjointness problem is defined by Disjn(S, T ) = 1 if S ∩ T = ∅ and 0 otherwise, where
S, T ⊆ [n]. The following theorem is known.

Theorem 3.2.7. [KS92, Raz92] Rpub1/3(Disjn) = Ω(n).

Now consider the `∞-norm approximation problem in the streaming model: we see a sequence
of integers i1, . . . , i` ∈ {1, . . . , n} in a stream, which define a histogram x ∈ Rn where xi represents
the number of times i appeared in the stream. Upon a query, we should output some z̃ such that
‖x‖∞ ≤ z̃ ≤ (1 + ε)‖x‖∞ with probability at least 2/3. Recall ‖x‖∞ = maxi |xi|.

Theorem 3.2.8. Suppose A is a randomized streaming algorithm for the `∞-norm approximation
problem which outputs z̃ such that ‖x‖∞ ≤ z̃ ≤ 1.1‖x‖∞ with probability at least 2/3. Then A uses
Ω(n) bits of memory.

Proof.

One might ask: what about approximation factors α � 1? That is, we should output z̃ such
that ‖x‖∞ ≤ z̃ ≤ α‖x‖∞. For this case, the work [BJKS04] considered a t-player generalization
Disjn,t. There are players A1, . . . , At where Ai receives as input some Si ⊆ [n]. They are promised
that either (1) Ai ∩ Aj = ∅ for all i 6= j, or (2) Ai ∩ Aj = {x} for some x ∈ [n] for all i 6= j. They
must decide which case they are in. That work considered the one-way complexity of this problem
in which A1 sends a message to A2, who then sends a message to A3, etc., until At finally has to
output the answer. The complexity measures are for the total amount of bits sent by all players
combined.



3.2. COMMUNICATION COMPLEXITY 39

Theorem 3.2.9. [BJKS04] Rpub1/3(Disjn,t) = Ω(n/t). In particular, some player must send a mes-

sage of length at least Ω(n/t2) bits.

Corollary 3.2.10. Suppose A is a randomized streaming algorithm that provides a better than
α-approximation for the `∞-norm approximation problem for some α ≥ 2, with probability at least
2/3. Then A uses Ω(n/α2) bits of memory.

Proof. The proof is identical to Theorem 3.2.8 but where we reduce from Disjn,dαe. In the case
that all sets are pairwise disjoint, we have ‖x‖∞ ≤ 1 and so the algorithm will report an answer
less than α. Meanwhile in case (2), ‖x‖∞ ≥ t = dαe and thus will output an answer that is at
least dαe. Thus the two cases are distinguishable by the streaming algorithm, implying some player
sends a message of length at least Ω(n/α2) bits. Since each player’s message length is exactly the
memory usage of A, the claim follows.

One can also apply the above reasoning to obtain a lower bound for approximating the “pth
moment” ‖x‖pp for any p ≥ 2, where ‖x‖pp :=

∑
i |xi|p.

Corollary 3.2.11. Suppose A is a randomized streaming algorithm that provides a 2-approximation
for the pth moment approximation problem, with probability at least 2/3. Then A uses Ω(n1−2/p)
bits of memory.

Proof. We reduce from Disjn,t for t = d(3n)1/pe. In the case the sets are disjoint, we have ‖x‖pp ≤ n.
Meanwhile if some element is in all the pairwise intersections then the pth moment is at least tp = 3n.
Thus a 2-approximation can distinguish these cases, solving disjointness.

It is known that this n1−2/p is optimal up to log n factors [IW05].

3.2.3 Indexing, GapHamming, and Distinct Elements

We wrap up this chapter by showing a chain of reductions that imply (1 + ε)-approximation of the
number of distinct elements in a data stream requires Ω(1/ε2) bits of memory (as long as ε > 1/

√
n).

We first introduce the communication problems Indexn and GapHammingn then show that the
former reduces to the latter, which then reduces to distinct elements in the streaming model.

In the Indexn problem Alice gets x ∈ {0, 1}n and Bob gets j ∈ [n], and Bob must output xj . We
consider one-way model, in which Bob must output the answer based on a single message to Bob.
Intuitively this problem is hard, since Alice does not know j and thus seemingly must tell Bob her
entire string for him to succeed with good probability. Our goal is to show Rpub,→1/3 (Indexn) = Ω(n).

We will use Theorem 3.2.1, which states that it suffices to lower bound Dµ,→
1/3 (Indexn) for some µ

that we may choose freely. We consider µ being the uniform distribution over (x, j). Since these
are now random variables, we henceforth refer to them as (X,J).

Before continuing, we state a few standard results from information theory.

Lemma 3.2.12 (Chain rule). H(Y |X) = H(X,Y )−H(X).

Lemma 3.2.13 (Fano’s inequality). Suppose X is a random variable finitely supported in X . Let

X̂
def
= g(Y ) be the predicted value of X for g a deterministic function also taking values in X . Then

if P(X̂ 6= X) = δ,

H(X|Y ) ≤ H(X|X̂) ≤ H2(δ) + δ log2(|X | − 1),

where H2(δ)
def
= −δ log2 δ − (1− δ) log2(1− δ).



40 CHAPTER 3. LOWER BOUNDS

Proof. Let E be an indicator r.v. for X 6= X̂. Then by the chain rule,

H(E,X|X̂) = H(X|X̂) +H(E|X, X̂)

but also

H(E,X|X̂) = H(E|X̂) +H(X|E, X̂) ≤ H(E) +H(X|E, X̂) = H2(δ) +H(X|E, X̂).

Also H(E|X, X̂) = 0. Thus H(X|X̂) ≤ H2(δ) +H(X|E, X̂). But also

H(X|E, X̂) = (1− δ) ·H(X|E = 0, X̂) + δ ·H(X|E = 1, X̂)

= δ ·H(X|E = 1, X̂)

≤ δ · log2(|X | − 1).

The last inequality is because if E = 1 then X 6= X̂, so X can take on one of at most |X | − 1
values.

Theorem 3.2.14. For any n ≥ 1, Duniform,→
δ (Indexn) ≥ (1−H2(δ))n.

Proof. Let Π(X) be the message Alice sends to Bob on input X. Then given Π(X), J , Bob outputs
X̂J s.t. P(X̂J 6= XJ) ≤ δ. Thus by Fano’s inequality, H(XJ |Π(X), J) ≤ H2(δ). By definition of
conditional entropy and the chain rule,

H(XJ |Π(X), J) =
n∑
j=1

P(J = j) ·H(XJ |Π(X), J = j)

=
1

n

n∑
j=1

H(Xj |Π(X))

≥ 1

n

n∑
j=1

H(Xj |Π(X), X1, . . . , Xj−1)

=
1

n

n∑
j=1

H(X1, . . . , Xj ,Π(X))−H(X1, . . . , Xj−1,Π(X))

= 1− 1

n
H(Π(X))

≥ 1− 1

n
|Π|.

The theorem follows by rearranging the inequality 1− |Π|/n ≤ H2(δ).

In GapHamn, Alice and Bob receive x, y ∈ {0, 1}n, respectively. Recall the Hamming distance
∆(x, y) := |{i : xi 6= yi}|. In Gap Hamming, Alice and Bob are promised that ∆(x, y) is either at
least n/2 +

√
n or at most n/2−

√
n and must decide which.

The following theorem is originally due to [Woo04], but the simpler proof we present here via
reduction form Index was given later in [TSJ08]. The lower bound being restricted to one-way
protocols was removed later in [CR12] (see also later simpler proofs [She12, Vid12]).

Theorem 3.2.15. Rpub,→1/3 (GapHamN ) = Ω(N).



3.2. COMMUNICATION COMPLEXITY 41

Proof. We reduce from Indexn to GapHamN for some odd integer n = βN (β a constant to be
determined later). Recall in the indexing problem Alice receives x ∈ {0, 1}n and Bob receives
i ∈ [n] and would like to compute xi after one single message from Alice. First, Alice forms a
vector x′ ∈ {−1, 1}n where x′i = −1 if xi = 1, and x′i = 1 if xi = 0. The two players will use public
randomness to agree upon N independent, uniformly random vectors r1, . . . , rN ∈ {−1, 1}n. Alice
will then create a vector a ∈ {−1, 1}n where ak = sign(〈x′, rk〉), and Bob creates b ∈ {−1, 1}n with
bk = rki . Note the argument to sign can never be 0 since n is odd. Alice and Bob then let their
answer be the answer to GapHamN for their inputs a, b.

We now must argue correctness. We write ak = rki x
′
i + (

∑
j 6=i r

k
j x
′
j) = rki x

′
i + α. Note if α 6= 0

then |α| ≥ 2 since it has an even number of summands, each of which is odd. Thus when α 6= 0,
sign(ak) = sign(α), which is uniformly random in {−1, 1} since α is a symmetric random variable.
Meanwhile if α = 0, then rki x

′
i equals rki iff xi = 0. Thus, letting [[E ]] denote 1 if E is true and 0

otherwise,

P(ak 6= bk) = P(α 6= 0) · P(ak 6= bk|α 6= 0) + P(α = 0) · P(ak 6= bk|α = 0)

=

(
1− c√

n

)
· 1

2
+

c√
n

[[xi = 0]], (Stirling approximation)

which is either 1/2 − c/
√
n or 1/2 + c/

√
n depending on whether xi = 0. Thus E∆(a, b) is either

N/2 − cN/
√
n or N/2 + cN/

√
n. By setting n = N/(100c2), E∆(a, b) is either N/2 + 10

√
N or

N/2 − 10
√
N . Thus by a Chernoff bound, it is either at least N/2 +

√
N or at most N/2 −

√
N

with large constant probability, which is then decided by the Gap Hamming protocol.

Corollary 3.2.16. For any ε ∈ (1/
√
n, 1), any algorithm A providing a (1 + ε)-approximation of

the number of distinct elements in a stream with probability at least 2/3 must use Ω(1/ε2) bits of
memory.

Proof. We reduce from GapHamN for N = 1/(5ε2). Alice runs A on the i such that xi = 1 and
sends the memory contents of A to Bob, as well as | support(x)|, i.e. |{i : xi 6= 0}| (the same as
|x| if one treats x as a set). Bob then continues running the algorithm on i such that yi = 1.
Note the players can do this since although the distinct elements universe is [n], we have N ≤ n
by the definition of N and restriction ε > 1/

√
n. Treating x, y as sets, we have that the number

of distinct elements is |x ∪ y| = ∆(x, y) + |x ∩ y| = ∆(x, y) + |x| + |y| − |x ∪ y|. Rearranging,
∆(x, y) = 2|x∪ y|− |x|− |y|. Bob is told |x|, and he knows |y|. He also can run A.query() to obtain
2(1± ε)|x∪ y|, which is equal to 2|x∪ y| with an additive error of at most 2εN = 1/ε <

√
N . Thus

this additive error is enough to decide Hamming distance at most N/2−
√
N or at least N/2 =

√
N

for Gap Hamming.



42 CHAPTER 3. LOWER BOUNDS



Chapter 4

Linear Sketching

The focus of this chapter will is linear sketching. This is a general technique for sketching a high-
dimensional vector x ∈ Rn where we store Πx in memory for Π ∈ Rm×n for some m � n. If Π
has a succinct representation (so that we spend � mn space to store it but there is a low-memory
algorithm to compute Πi,j given i, j), then our sketch reduces the representation of x from n units
of memory to m � n. This technique is not only commonly used in the design of streaming
algorithms, but also when designing distributed algorithms as well as we will discuss later in this
chapter.

Regarding streaming algorithms, up until this point we have focused on streaming algorithms
in the so-called insertion-only model. Specifically, consider the scenario of a vector x ∈ Rn with n
large, and x starting as the 0 vector. Then we see a sequence of updates (i,∆) each causing the
change xi ← xi + ∆. For example consider ∆ = 1 for every update, so that x is simply a histogram
tracking the number of occurrences of each item from some size-n universe in the stream

In the above setup, there are three popularly studied models:

1. insertion-only: Each update has ∆ = 1 (the assumption in previous chapters).

2. strict turnstile: Some updates ∆ can be negative, but we are given the promise that ∀i,
xi ≥ 0 at all times. This makes sense for example in graph streaming, in which case n =

(|V |
2

)
for vertex set V , and xe represents the multiplicity of edge e. In a dynamic graph edges may
be inserted and deleted, but the multiplicity of an edge would never be negative.

3. general turnstile: Anything goes. Updates can be negative, and entries in x can be negative
as well. For example, we may wish to process one time period’s updates with ∆ = −1 and
another period with ∆ = +1 so that we can later query x being the difference vector of the
two time periods.

In this chapter, when discussing streaming we focus on algorithms for the strict and general
turnstile models. Note that if we store y = Πx in memory, the update (i,∆) causes the change
x← x+∆·ei, and thus y ← y+∆·Πi, where Πi is the ith column of Π (since generally Az =

∑
i ziA

i

for any matrix-vector product Az). All known algorithms for both strict and general turnstile are
actually linear sketches. It is in fact known [LNW14, AHLW16] that any algorithm in these two
models can be converted into a linear sketch with only a logarithmic factor loss in space complexity,
if the algorithm is required to be correct on very long streams1.

1When this assumption does not hold, in certain cases one can do better than linear sketching [KP20].

43



44 CHAPTER 4. LINEAR SKETCHING

4.1 Heavy hitters

In this section we discuss two types of (related) problems, referred to as heavy hitters and point
query. For both of these problems, we consider x being updated in the turnstile streaming model.
There is also an integer parameter k > 0 given at the beginning of the stream.

In the `1 point query problem with parameter k (we sometimes say (k, `1)-point query), we must
answer queries of the form query(i), for i ∈ [n], with a value in the range xi ± ‖x‖1/k. Here k is a
parameter known at the beginning of the stream.

In `1 heavy hitters with parameter k (or (k, `1)-heavy hitters), there is only one query, and we
must answer it with a set L ⊂ [n] such that

1. |L| = O(k)

2. |xi| > ‖x‖1/k =⇒ i ∈ L

The indices i satisfying the second criterion are called k-heavy hitters or k-frequent (sometimes we
drop the k if clear from context).

Note ‖x‖1/k = (1/k)
∑n

i=1 |xi|. The number of i which can be strictly larger than an α-fraction
of this sum must be strictly less than 1/α, and thus there can be at most k − 1 heavy hitters. We
are thus requiring that the list L being returned not be more than a constant factor larger than
the absolute biggest it need to be to contain all the heavy hitters.

Remark 4.1.1. The tail versions of these problems are also commonly studied. Define xtail(k) to
be the vector x but with the top k entries in magnitude all zeroed out. Then in the `1-tail point
query problem, we would like error ‖xtail(k)‖1/k instead of ‖x‖1/k. Similarly for heavy hitters, we
require that |xi| > ‖xtail(k)‖1/k =⇒ i ∈ L. Note under this definition, there can be at most 2k − 1
heavy hitters. Specifically, ignoring the k “head” indices (those not in the tail), there are fewer
than k tail indices that can contribute strictly more than a 1/k fraction of the total tail mass.

The following lemma shows why point query and heavy hitters are related.

Lemma 4.1.2. Suppose there is an algorithm A solving (3k, `1)-point query with failure probability
at most δ/n and using S words of memory. Then there is an algorithm A′ solving (k, `1)-heavy
hitters with failure probability at most δ and using space at most S + 3k.

Proof. Algorithm A′ uses A to process the stream. Then to answer a heavy hitters query, it loops
through all i ∈ [n] and point queries each one, remembering the 4k indices i with the point query
values (breaking ties arbitrarily). Henceforth condition on the event that all n point queries return
correct values, which happens with failure probability at most δ by the union bound. Note then
that any k-frequent index i will have a point query value strictly larger than ‖x‖1/k−‖x‖1/(3k) =
(2/3)‖x‖1/k. Meanwhile, any index i with |xi| < ‖x‖1/(3k) will have a point query value strictly
less than (2/3)‖x‖1/k, and thus will not appear larger than any actual k-frequent item. Since there
are at most 3k indices satisfying |xi| ≥ ‖x‖1/(3k), our return list is thus guaranteed to contain all
k-frequent indices.

4.1.1 CountMin sketch

We here describe the CountMin sketch [CM05], which solves `1 point query in the general turnstile
model. We will describe it here in the strict turnstile model. We now describe the operation of the
algorithm:



4.1. HEAVY HITTERS 45

1. We store hash functions h1, ...hL : [n] → [t], each chosen independently from a 2-wise inde-
pendent family.

2. We store counters Ca,b for a ∈ [L], b ∈ [B] with B = 2k, L = dlog2(1/δ)e.

3. Upon an update (i,∆), we add ∆ to all counters Ca,ha(i) for a = 1, . . . , L.

4. To answer query(i), we output min1≤a≤LCa,ha(i).

Note that our total memory consumption is O(L) to store the seeds that specify all L hash
functions, as well as O(BL) words to store the counters Ca,b. Thus the total memory consumption
is O(BL) words.

Lemma 4.1.3. CountMin.query(i) returns xi ± ‖x‖1/k w.p. ≥ 1− δ.

Proof. Fix i, let Zj = 1 if hr(j) = hr(i), Zj = 0 otherwise. Now note that for any r ∈ [L],
Cr,hr(i) = xi +

∑
j 6=i xjZj := xi + E. We have EE =

∑
j 6=i |xj | · EZj =

∑
j 6=i |xj |/B ≤ ‖x‖1/(2k).

Thus by Markov’s inequality, P(E > ‖x‖1/k) < 1/2. Thus by independence of the L rows of the
CountMin sketch, P(minr Cr,hr(i) > xi + ‖x‖1/k) < 1/2L ≤ δ.

Thus we easily obtain the following theorem via Lemma 4.1.2.

Theorem 4.1.4. There is an algorithm solving the `1 k-heavy hitter problem in the strict turnstile
model with failure probability δ, space O(k log(n/δ)), update time O(log(n/δ)), and query time
O(n log(n/δ)).

It is also possible to obtain the tail guarantee for point query from the CountMin sketch with
the same memory up to a constant factor.

Lemma 4.1.5. The CountMin sketch as above but with B ≥ 4k guarantees that for any i, query(i) =
xi ± ‖xtail(k)‖1/k w.p. ≥ 1− δ.

Proof. We let H ⊂ [n] denote the indices of the top k entries in magnitude in x, and T := [n]\H
be the remaining indices (the support of the tail). For fixed r ∈ [L] we write Cr,hr(i) − xi =∑

j∈H\{i} |xj |Zj +
∑

j∈T\{i} |xj |Zj := E1 + E2 where Zj is an indicator random variable for the
event hr(i) = hr(j). Consider the event Fr that hr(i) /∈ hr(H\{i}). This happens with probability
at least 1− |H|/B ≥ 3/4 by a union bound over all j ∈ H\{i} (recall |H| = k). When Fr occurs,
E1 = 0. Now consider the event F ′r that |E2| ≤ ‖xT ‖1/k = ‖xtail(k)‖1/k, where xS denotes the
projection of x onto S ⊂ [n] (i.e. zero out all entries that are not in S). By an analysis similar to
the proof of Lemma 4.1.3, P(F ′r) ≥ 3/4. Thus by a union bound P(Fr ∧ F ′r) ≥ 1/2, i.e. for each r
Cr,hr(i) provides at most the desired error with probability at least 1/2. Since each Cr,hr(i) is either
equal to xi or an overestimate, minr Cr,hr(i) fails to give the desired error guarantee iff each Cr,hr(i),

which happens with probability at most 2−L ≤ δ.

Remark 4.1.6. Similar guarantees for point query and heavy hitters are obtained in the general
turnstile model, but with a slightly larger B and L (by constant factors) and with the estimator
returned as the median of the Cr,hr(i) instead of the minimum. For example, if we pick B = 3k
then we have P(|Cr,hr(i) − xi| > ‖x‖1/k) < 1/3. The Chernoff bound thus implies that the median
estimator succeeds with probability 1− δ for L = C log(1/δ) for sufficiently large constant C > 0.



46 CHAPTER 4. LINEAR SKETCHING

Speeding up query time

While the above algorithm gives some correct heavy hitter algorithm with small space, the query
time is quite slow. Here we discuss the dyadic trick technique of [CM05] to speed up query.

Consider a perfect binary tree whose leaves are in correpondence with [n].

{1, 2, ...n}

{1, 2, ...n/2}

...

1 2 . . .

...

{n/2 + 1, ...n}

...
...

. . . n− 1 n

There are 1 + lg n levels of the tree. We imagine level j of the tree (with the root being level 0)
corresponds to a 2j-dimensional vector x(j) being updated. Each node in the tree is a coordinate
of the vector at the corresponding level, and the value at that coordinate is the sum of the two
values of the children (with ith leaf simply having value xi). Then when we see an update (i,∆),
we imagine that this update happens to all coordinates that are ancestors of the ith leaf. Then
what we actually store in memory is 1 + lg n CM sketches, one per level. Then upon an update,
we feed that update to the appropriate coordinate at the CM sketch at every level.

Each CM sketch is instantiated to solve the 4k-heavy hitters problem with failure probability
η = δ/(4k log n). Thus the total space is O(k log(1/η) log n) = O(k log((k log n)/δ) log n).

To answer a query, the key insight is that in the strict turnstile model the value at any ancestor
of a node is at least as big as the value at that node, and furthermore the `1 norm of the implicit
vector at each level of the tree is exactly the same. Therefore, if i is a heavy hitter for the vector
x at the lowest level of the tree, then every ancestor of i is a heavy hitter at its level as well. Since
there can only be at most 2k indices that are 2k-heavy hitters, this suggests the following depth
first search tree. We move down the tree starting from the root (the root vertex is certainly a
heavy hitter for its 1-dimensional vector). At each level j of the tree, we keep track of a list Lj
of heavy hitters at that level (Lj should contain all k-heavy hitters of the vector at its level and
not contain any item that is not at least a 2k-heavy hitter). Then, for each of the two children of
an index in Lj , we point query that child using the CM sketch at level j + 1. If a child has point
query output at least (3/4))‖x‖1/k, we include it in Lj+1 (note that computing ‖x‖1 exactly in the
strict turnstile model is trivial: maintain a counter). Finally, our final output list L is simply the
list corresponding to the bottom-most level of the tree.

Correctness. Note that since each Lj has size at most 2k, we point query at most 4k children on
the next level. Thus the total number of queries is at most 4k log n (if it is ever the case that we find
ourselves querying more, we can simply output Fail). Thus since we only do at most Q ≤ (4 lg n)/α
queries, since each CM sketch has failure probability at most δ/Q, by a union bound the probability
that any point query we ever make fails is at most δ. Conditioned on such failure not occurring, if
some heavy hitter leaf i is not included in the final L, look at the highest ancestor i′ of i on some
level j which was not included in Lj . i

′ cannot be the root, since it is included in L0. Thus the



4.1. HEAVY HITTERS 47

parent of i′ was included in Lj−1, which implies i′ was point queried; this is a contradiction to it
not being included, since we conditioned on all point queries succeeding.

Complexity. The space used is O(k lg(1/η) log n) = O(k log((k log n)/δ) log n) (in words) as men-
tioned. The query time is the same. The update time is O(log n lg(1/η)) = O(log n lg((k log n)/δ)).

Though we will not discuss it here, currently the best known algorithm for `1 heavy hitters in
the turnstile model is the ExpanderSketch of [LNNT16]. It achieves O(k log(n/δ)) words of space,
O(log(n/δ)) update time, and O(k log(n/δ) poly(lg n)) query time to achieve failure probability δ.

4.1.2 CountSketch

The CountSketch [CCF04] algorithm is similar to the CountMin sketch, except it provides the
guarantee that point query returns an estimate equal to xi ± ‖x‖2/

√
k (called “`2 point query”).

It also solves `2 heavy hitters, which requires returning a list of size L containing all i such that
|xi| > ‖x‖2/

√
k. One could also study the tail version of this problem, in which one wishes the

point query error to be at most ‖xtail(k)‖/
√
k, and where `2 tail heavy hitters are defined to be the

i such that |xi| > ‖xtail(k)‖2/
√
k.

We first show that obtaining the `q tail guarantee is always at least as good as obtaining the `p
tail guarantee for q > p, up to potentially changing the k by a factor of 2. Thus an `2 tail guarantee
is better than an `1 tail guarantee. For example, consider the vector x = (

√
n, 1, 1, . . . , 1). Then

index i = 1 is a 1-heavy hitter in `2 even in the non-tail version of the problem, whereas it is only
O(1/

√
n)-heavy in `1.

Lemma 4.1.7. For any 1 ≤ p < q, ‖xtail(2k)‖q/k1/q ≤ ‖xtail(k)‖p/k1/p.

Proof. For simplicity assume x is infinite-dimensional (pad it with zeroes). Let S1 ⊂ [n] of size k
be the set of i with the largest |xi| values (break ties arbitrarily). Let S2 be the indices of the next
k largest entries, etc. Then

1

k1/q
‖xtail(2k)‖q =

1

k1/q

 ∞∑
j=3

‖xSj‖qq

1/q

≤ 1

k1/q

 ∞∑
j=3

k · ‖xSj‖q∞

1/q

≤ 1

k1/q

 ∞∑
j=3

k ·
‖xSj−1‖

q
p

kq/p

1/q

(∀i ∈ Sj , |xi| ≤ (‖xSj−1‖pp/k)1/p)

=
1

k1/p

 ∞∑
j=3

‖xSj−1‖qp

1/q

=
1

k1/p

 ∞∑
j=3

‖xSj−1‖pp

1/p

(∀v, |v‖q ≤ ‖v‖p)

=
1

k1/p
‖xtail(k)‖p



48 CHAPTER 4. LINEAR SKETCHING

The CountSketch works similarly to the CountMin sketch, but differs slightly in the following
way: we in addition select L hash functions h1, . . . , hL : [n]→ {−1, 1} independently from a 2-wise
independent family. Then to process an update (i,∆), we add σr(i)∆ to Cr,hr(i) for r = 1, . . . , L
(instead of only adding ∆ as in the CountMin sketch). For point query, we pick B = 9k and
L = C log(1/δ) for some constant C > 0. To answer a query, we output the median of σr(i)Cr,hr(i)
over all r ∈ [L].

Lemma 4.1.8. CountSketch.query(i) returns xi ± ‖x‖2/
√
k w.p. ≥ 1− δ.

Proof. Fix r and let Zj be an indicator random variable for the event hr(i) = hr(j). Write the error
random variable Er := σr(i)Cr,hr(i) − xi =

∑
j 6=i σr(i)σr(j)Zjxj . Then the lemma is equivalent to

showing that the median over r of |Er| is at most ‖x‖2/
√
k with probability at least 1 − δ. For

this to hold, by the Chernoff bound and choice of L it suffices to show that for any r ∈ [L],
P(|Er| > ‖x‖2/

√
k) < 1/3.

E |Er| ≤
√

EE2
r (Lemma 1.1.9)

=

E

∑
j,j′ 6=i

σr(j)σr(j
′)ZjZ

′
jxjxj′

1/2

=

E

∑
j 6=i

Zjx
2
j +

∑
j,j′ 6=i
j 6=j′

σr(j)σr(j
′)ZjZ

′
jxjxj′




1/2

=

∑
j 6=i

(EZj)x2
j +

∑
j,j′ 6=i
j 6=j′

(Eσr(j)σr(j′))(EZjZ ′j)xjxj′


1/2

(linearity of expectation)

=

∑
j 6=i

(EZj)x2
j +

∑
j,j′ 6=i
j 6=j′

(Eσr(j))(Eσr(j′))(EZjZ ′j)xjxj′


1/2

(2-wise independence)

=

∑
j 6=i

(EZj)x2
j

1/2

≤ ‖x‖2√
B

=
1

3
· ‖x‖2√

k

Thus by Markov’s inequality, P(|Er| > ‖x‖2/
√
k) < 1/3, as desired.

The following corollary then holds by combining Lemma 4.1.8 with Lemma 4.1.2.

Corollary 4.1.9. The CountSketch solves `2 k-heavy hitters in general turnstile streams with failure
probability δ using O(k log(n/δ)) words of memory.

The following lemma also holds by combining Lemma 4.1.8 with an analysis almost identical to
that of Lemma 4.1.5.



4.2. GRAPH SKETCHING 49

Lemma 4.1.10. The CountSketch sketch as above but with B ≥ 15k guarantees that for any i,
query(i) returns a value xi ± ‖xtail(k)‖2/

√
k w.p. ≥ 1− δ.

4.2 Graph sketching

In this section we show the perhaps surprising result that linear sketching can be used to solve
combinatorial problems on graphs. Specifically, we consider a dynamic (multi)graph on n vertices
in which vertices can be both inserted and deleted. This model can be faithfully represented in the
strict turnstile model, where x has dimension

(
n
2

)
; xe specifies the presence (or number of copies) of

edge e in the graph. An insertion of edge e then corresponds to the turnstile update (e,+1), whereas
an edge deletion corresponds to the update (e,−1). Solving graph problems naively would require
remembering x exactly, i.e. Ω(n2) memory in the worst case. In this section we describe the “AGM
sketch” [AGM12], which shows that dynamic spanning forest can be solved using O(n logc n) bits
of memory with success probability 1 − 1/ poly(n). The AGM sketch achieves the exponent with
c = 3, though in these notes we describe a simpler version achieving c = 4. One can also obtain
bounds based on the failure probability as a separate parameter δ; see [NY19]. Note that being able
to query the dynamic spanning forest allows for solving many other problems, such as finding an s-t
path, global connectivity, or s-t connectivity. It is furthermore known that the Ω(n log3 n) bound
is tight; any algorithm that reports a spanning forest with probability at least even 1% must use
this much memory [NY19]. Yu recently showed a stronger lower bound in the distributed sketching
model, in which all vertices and a “referee” share public randomness each vertex knows only its own
neighborhood and must send a short message to the referee; he showed that even if the query is not
required to output an entire spanning forest but simply a single bit indicating whether the graph is
connected, the average message length must be Ω(log3 n) bits [Yu21] (the AGM sketch provides a
matching upper bound for spanning forest in this model as well). After the paper [AGM12], linear
sketching has been proven useful for a wide variety of dynamic graph problems; see [McG14] for a
survey.

The AGM sketch uses certain other data structures as subroutines, which we describe first.
Both these data structures operate in the general turnstile model.

4.2.1 k-sparse recovery

Recall support(x) ⊆ [n] denotes the indices i such that xi 6= 0. The parameter k is given at
the beginning of the stream, and there is a single query. The answer to a query is as follows: if
| support(x)| ≤ k, the query simply returns x exactly (the indices in the support together with their
values); otherwise, the query response can be arbitrary. We show that this problem can be solved
deterministically using O(k log(nM)) bits of memory if we are promised that all update amounts
are integers and no entry of x is ever larger than M in magnitude. Note with this restriction it
suffices to solve the problem over Fp for any prime p > M , as any xi will equal xi mod p. The
solution we discuss will also require p ≥ n, and thus we will work over any prime p > max{M,n}.
The total space will be at most 2kdlog pe bits.

Recall in linear sketching we maintain Πx in memory for some Π ∈ Rm×n (in this case Π ∈
Fm×np )). k-sparse recovery is possible iff Πx 6= Πy for x, y distinct k-sparse vectors, which is
equivalent to Π(x − y) 6= 0. Noting x − y is 2k-sparse, this requirement is thus equivalent to
Πz 6= 0 for any 2k-sparse vector z. If S denotes the support of z, then Πz = ΠSz, where ΠS is the
m × |S| submatrix of Π keeping only the columns indexed by S. Thus our requirement for Π is
that all of its m× 2k submatrices have full column rank. We will pick m = 2k, so these are square
submatrices; thus having full column rank is equivalent to det(ΠS) 6= 0 for all 2k× 2k submatrices



50 CHAPTER 4. LINEAR SKETCHING

of Π. We will specifically pick Π to be the transpose of a Vandermonde matrix. Specifically, pick
x1 6= x2 6= · · · 6= xn ∈ Fp (this is why we require p ≥ n, to guarantee at least n distinct elements in
Fp) and set Πi,j = xi−1

j mod p for i, j ∈ [n]. For concreteness, we could pick xj = j. The following
known fact, which we will not prove here, implies that any 2k × 2k submatrix of Π has nonzero
determinant.

Fact 4.2.1. Let A ∈ F r×r be such that Ai,j = xi−1
j for i, j ∈ [r] for some field F . Then

det(A) =
∏

1≤i<j≤n
(xi − xj)

The above fact is usually written for A>, but note det(A) = det(A>) for any A. Note Fact 4.2.1
implies det(A) 6= 0 if the xi are distinct.

Lemma 4.2.2. Suppose A ∈ Fm×n is such that every m×2k submatrix of A has full column rank,
where F is a field. Then there is an algorithm running in

(
n
2k

)
· poly(n) to recover x given y = Ax

for any k-sparse x.

Proof. We loop over all S ⊂ [n] of size exactly 2k (our guess for a set containing the support of
x) and compute x′ = Π−1

S y. If x′ is k-sparse, then we form x as the n-dimensional vector x with

xS = x′ and x[n]\S = ~0 and return x.

Remark 4.2.3. For the particular scheme we propose, it is possible to actually recover x from Πx
in O(k2 polylog(p)) time via an algorithm called syndrome decoding, though we will not cover it
here.

4.2.2 SupportFind

In this problem, we would like a randomized data structure which, if x = 0, reports null. Otherwise,
if x 6= 0 it should return some i ∈ support(x) with probability at least 1− δ (with probability δ it
is allowed to behave arbitrarily). There are no promises regarding the vector x; it may or may not
be sparse, yet the query algorithm should still succeed.

We describe an algorithm, the JST sketch, for this problem due to [JST11] which usesO(log(1/δ) log2 n)
bits of memory if all entries in x are promised to be integers which are at most poly(n) in mag-
nitude. It is known that this bound is optimal even if the entries of x are promised to always be
either 0 or 1 [KNP+17].

The JST sketch uses the geometric sampling technique of Subsection 2.2.3. Specifically, we pick
a hash function h : [n] → [log2 n] with P(h(i) = j) = 1/2j (other than for j = log2 n, in which
case we have P(h(i) = j) = 1/2j−1 so that the probabilities add to one). For now we assume h
is a perfectly random hash function, though we discuss in Remark 4.2.5 how this can be relaxed
using bounded independence. For each j ∈ [log2 n], we also instantiate a k-sparse recovery data
structure Aj from Subsection 4.2.1 with k = C log(1/δ) for a sufficiently large constant C > 0 and
with M = poly(n).

To process update(i,∆), we simply call Ah(i).update(i,∆). To process a query, we loop from
j = log2 n down to 1 and for each such j call Aj .query(). For the first (i.e. largest) value of j for
which the query is not the zero vector, we return any index in the support of the query response.
See Subsection 4.2.2 for pseudocode.

Theorem 4.2.4. If x = 0, null is returned with probability 1. Otherwise, the probability some
i ∈ support(x) is returned is at least 1− δ.



4.2. GRAPH SKETCHING 51

for j = log2 n, . . . , 1:
z ← Aj .query()
if z 6= 0:

return any i such that zi 6= 0
return null // x is the zero vector

Proof. The case x = 0 is clear, as all Aj will return the zero vector when queried. Also clear is the
case | support(x)| ≤ k := C log(1/δ), since every Aj will receive a vector with support size at most
that of x (and thus will return its received vector exactly), and at least one of the Aj must receive
a nonzero vector if x 6= 0 since every index of x is hashed to exactly one Aj .

For the remainder of the proof we thus focus on the case that support(x) ≥ k. Let t denote
| support(x)|. Let x(j) denote the vector x where we zero out all coordinates i such that h(i) 6= j,
and define the random variable Tj := | support(x(j))|. For some (large) constant c such that
1 < c < C, let j∗ ∈ [log2 n] be such that c log(1/δ) ≤ t/2j∗ < 2c log(1/δ). Such j∗ must exist since
t > C log(1/δ). We define two events: E1 is the event maxj≥j∗ Tj ≤ k, and E2 is the event Tj∗ ≥ 1.
Note if both events occur, then our query output is guaranteed to be correct. This is because E1

implies Aj .query() will correctly return x(j) for all j ≥ j∗, and E2 implies that at least one of these
x(j) is nonzero (since in particular x(j∗) 6= 0). We then show P(¬E1∨¬E2) ≤ δ, by the union bound.

We bound P(¬E1) itself by a union bound over j ≥ j∗. Note ETj = t/2j . Then P(Tj >
k) = P(Tj > (k2j/t) · ETj) < (k2j/t)−C

′k (see Eq. (1.7)). Summing over j ≥ j∗ gives a geo-
metric series dominated by its largest term, which is the term for j∗, which is (k2j

∗
/t)−C

′k ≤
(k/(c log(1/δ))−C

′k = (C/c)−C
′k < δ/2 for C sufficiently larger than c. P(¬E2) is also bounded by

the Chernoff bound. We have ETj∗ ∈ [c log(1/δ), 2c log(1/δ)]. Thus P(¬E2) = P(Tj∗ = 0), which is
at most δ/2 by the Chernoff bound.

Remark 4.2.5. It is a useful fact to know that tail bounds imply moment bounds and vice versa.
In one direction, if we have a bound on all moments ‖Z‖p then we have a tail bound via Markov’s
inequality: P(|Z| > λ) < infp{λ−p‖Z‖pp} (recall ‖Z‖p := (E |Z|p)1/p). The value p ≥ 1 can be
chosen to minimize the right hand side. In the other direction, ‖Z‖pp =

∫∞
0 pxp−1 P(|Z| > x)dx via

integration by parts. Thus a tail bound on |Z| yields moment bounds. Now, since the Chernoff
bound gives strong tail bounds, one can use this correspondence to obtain the implied moment
bounds on |

∑
iXi− µ| for all p ≥ 1, and from those moment bounds re-derive the Chernoff bound

itself by choosing p optimally based on λ and µ, which is determined by p-wise independence of the
Xi if p is an even integer. The punchline is that if one were to carry out this calculation exercise,
one would find that whenever the Chernoff bound yields tail probability δ, it sufficed to choose
p = O(log(1/δ)), so that the Xi could be O(log(1/δ))-wise independent (see also [BR94, SSS95],
which take different approaches to showing this). This observation allows one to select the h in the
JST sketch from an O(log(1/δ))-wise independent family, so that it only takes O(log(1/δ) log n)
bits to represent.

4.2.3 AGM sketch

Before describing the AGM sketch, we first design a non-streaming algorithm. Imagine that we
proceed in R = log2 n rounds. We start each round with a partition that is a refinement of the
partition of vertices into connected components, and in the first round each vertex is in its own
partition. Now, at the beginning of each round we ask each partition (which we henceforth call
a super-vertex) to identify an edge leaving it and entering another partition. At the end of the



52 CHAPTER 4. LINEAR SKETCHING

vertex we then merge along the set of all identified edges: if two super-vertices are connected by
an identified edge, we merge them into an even bigger super-vertex. The spanning forest we return
is the set of all identified edges across the rounds. Note this algorithm is correct since the number
of non-maximal components at least halves in each round, and we started with n components and
at the end there are is at least 1.

We now describe how to implement the above approach in the streaming model. Imagine each

vertex u keeps track of a signed neighborhood vector xu ∈ R(n2). For any edge e such that either e
is not actually in the graph, or e does not contain vertex u, we set (xu)e = 0. However if e = (u, v)
is actually in the graph, we set (xu)e = 1 if u < v or (xu)e = −1 if u > v. The key reason for
signing in this way is that if A is a partition (or super-vertex), then if we define xA :=

∑
u∈A xu,

then support(xA) is exactly the set of edges with exactly one endpoint in A and one endpoint in a
different super-vertex. Recall that the data structure of Subsection 4.2.2 is a (randomized) linear
sketch. We pick R = log n such linear sketching matrices independnetly Π1, . . . ,ΠR each with
failure probability δ < 1/(n1+βR) (if our desired failure probability is 1/nβ). We store in memory
Πrxu for all vertices u ∈ [n] and all r ∈ [R]. The total space is thus O(nR log3 n) = O(n log4 n)
bits. We simulate the offline algorithm by, in each round r, forming sketches for each super-vertex
A as

∑
u∈A Πrxu, which by linearity is just Πr(

∑
u∈A xu) = ΠrxA. We then query for each A to

obtain edges leaving each super-vertex. The probability that we always obtain correct edges is the
probability that no SupportFind query ever fails, which is at most δnR < 1/nb by the union bound.

We remark that one may be tempted to pick only a single Π and store all Πxu in memory.
Then we can reuse the same Π in each round. Doing so unfortunately is incorrect. This is be-
cause our guarantees for randomized algorithms A are of the following form: for all inputs x,
P(A gives the correct answer on input x) ≥ 1− δ. Here the probability is over some random string
α that provides mathcalA with its source of randomness. But by the order of quantifiers, this
means x must be fixed before drawing α randomly. In other words, x is not allowed to depend on
α. However if we use the same Π in each round, then the fact that we merged certain vertices after
round 1 is because of the (random) set of edges our SupportFind data structure happened to identify
in round 1. Then we form super-vertices A based on these identified edges, so our next query in
random 2, i.e. the fact that we are asking about certain A, is correlated with the randomness of Π.
The AGM sketch avoids this by using fresh random Πr in each round, independent of the linear
sketches used in previous rounds. Thus the queries being asked of Πr are uncorrelated with the
randomness used to specify Πr.

Remark 4.2.6. The version of the AGM sketch described here uses O(n log4 n) bits of memory,
though it is possible to implement it using O(n log3 n) bits of memory. The improvement comes
from slightly changing the definition of the SupportFind problem which the AGM sketch relies on.
Instead, imagine defining the problem so that there are two types of failure modes, with separate
failure probabilities δ1 and δ2. In the first failure mode, the data structure should output Fail. In
the second failure mode, it may fail without warning (i.e. it simply outputs an index not actually
in the support of x). Note some failures of the first form are tolerable for the AGM sketch; it
simply means there are some supervertices in some rounds which fail to identify an outgoing edge.
This is acceptable though, as long as most supervertices in most rounds do identify an outgoing
edge (and we can increase R by a constant factor to compensate). Thus we can set δ1 to be some
small constant, e.g. 1/10. Failures of the second type though are deadly, since even one such failure
causes the entire algorithm to fail. We thus set δ2 = 1/ poly(n). It is possible to show that such
a data structure, with these two failure modes where one is allowed to happen fairly often, can be
implemented more memory-efficiently than the structure in Subsection 4.2.2 (though the design of
the data structures are very similar), leading to the optimal implementation of the AGM sketch.



4.3. NORM ESTIMATION 53

For details, see the appendix of [NY19].

4.3 Norm estimation

The problem of `p norm estimation, i.e. providing a multiplicative approximation to ‖x‖p :=
(
∑

i |xi|p)1/p, was first investigated by Alon, Matias, and Szegedy [AMS99]. Specifically, let Fp
denote the pth moment ‖x‖pp =

∑p
i=1 |xi|p. As usual, we would like a (1 + ε)-approximation to

Fp with probability 2/3. It turns out there is a phase transition in the space complexity of Fp
estimation.

• 0 ≤ p ≤ 2: it is known that poly(ε−1 log n) words of space is achievable [AMS99, Ind06]. For
p = 0, we treat 00 as 0 and any nonzero element to the 0th power as 1, which is the limit of
Fp for p ↓ 0. Note that in insertion-only streams, F0 is simply the distinct elements problem
from Section 2.2.

• For p > 2 and constant ε, it is known the space complexity is n1−2/p up to logarithmic factors
[BJKS04, IW05]. That is, there are both upper and lower bounds. Recall this fact was
discussed in and below Corollary 3.2.11.

4.3.1 AMS sketch

We now look at the case p = 2, which is solved by the AMS sketch [AMS99]. Let σ ∈ {−1, 1}m×n
be drawn from a 4-wise independent family for some m < n to be determined later. We need
O(log(mn)) = O(log n) bits, i.e. one machine word, to represent σ. Define Π ∈ Rm×n by Πi,j =
σi,j/
√
m so that y = Πx satisfies yi =

∑n
j=1 σi,jxj/

√
m. We estimate ‖x‖22 by ‖Πx‖22 = ‖y‖22.

Analysis.

E y2
r =

1

m
E

 n∑
j=1

σr,jxj

2

=
1

m

‖x‖22 + E
∑
j 6=j′

σr,jσr,j′xjxj′


=

1

m

‖x‖22 +
∑
j 6=j′

(Eσr,jσr,j′)xjxj′


=

1

m

‖x‖22 +
∑
j 6=j′

(Eσr,j)(Eσr,j′)xjxj′

 (2-wise independence)

=
1

m
‖x‖22,

and thus ‖y‖22 =
∑m

r=1 y
2
r has expectation ‖x‖22. Next we need to estimate the variance in order to

apply Chebyshev’s inequality. Observe that

E(‖y‖22 − E ‖y‖22)2 =
1

m2
E

 m∑
r=1

∑
j 6=j′

σr,jσr,j′xjxj′

2



54 CHAPTER 4. LINEAR SKETCHING

=
1

m2

∑
r1,r2

∑
j1 6=j2
j3 6=j4

(Eσr1,j1σr1,j2σr2,j3σr2,j4)xr,j1xr,j2xr,j3xr,j4 (4.1)

=
2

m

∑
j1 6=j2

x2
j1x

2
j2 (4.2)

≤ 2

m
‖x‖42,

To see Eq. (4.2), observe that if r1 6= r2 then the four σr,j in Eq. (4.1) all have different indices
and thus by 4-wise independence the expectation is zero. Thus we need only consider the case
r1 = r2 = r. In this case, we must either have j1 = j3, j2 = j4 or j1 = j4, j2 = j3 else at least
one random sign will appear with exponent one and make the expectation zero. Now for a fixed
j < j′, the term x2

jx
2
j′ appears twice in the summation Eq. (4.2) (once for j1 = j, j2 = j′ and once

for j1 = j′, j2 = j), whereas it appears four times in Eq. (4.1). We thus multiply by the factor two
to compensate.

Thus by Chebyshev’s inequality, for m ≥ 6/ε2 the probability our estimator is outside of
[(1− ε)‖x‖22, (1 + ε)‖x‖22], i.e. deviates from its expectation by more than ε‖x‖22, is at most

2‖x‖42
m

· 1

ε2‖x‖42
≤ 1/3.

Remark 4.3.1. One can also obtain the same result by letting Π be the CountSketch matrix (as
shown in [TZ12]). That is, we pick random h : [n] → [m] from a 2-wise independent family and
σ ∈ {−1, 1}n from a 4-wise independent family and define Π ∈ Rm×n to be the matrix with exactly
one nonzero per column: Πh(j),j = σj for each j ∈ [n]. Then one can show E ‖Πz‖22 = ‖z‖22 and
V ar[‖Πz‖22] = O(1/m)‖z‖42, so that by Chebyshev’s inequality for m = O(1/ε2) we have ‖Πz‖22 is
a (1± ε)-approximation of ‖z‖22 with probability at least 2/3.

4.3.2 Indyk’s p-stable sketch

The AMS sketch gives a memory-efficient sketch for p = 2, but what about other norms? In [Ind06],
Indyk showed that a memory-efficient streaming algorithm exists for estimating `p norms for any
p ∈ (0, 2) (when p ≤ 1 is not a norm, but ‖x‖p := (

∑
i |xi|p)1/p is still a well-defined function). To

accomplish this, he made use of p-stable distributions.

Definition 4.3.2. A probability distribution Dp over R is said to be p-stable if for Z,Z1, . . . , Zn
independently drawn from Dp and for any fixed x ∈ Rn, the random variable

∑n
i=1 xiZi is equal in

distribution to ‖x‖p · Z.

Some examples are the standard normal distribution N (0, 1), which is 2-stable. This holds
since xigi is a gaussian with variance x2

i , and the sum of independent gaussians is a gaussian
whose variance is the sum of the individual variances. Another less-known example is the Cauchy
distribution, which is 1-stable; it has probability density function ϕ(x) = 1/(π(1 + x)2). It is a
known theorem that such distributions exist iff p ∈ (0, 2]. Note that p-stable random variables for
p 6= 2 cannot have bounded variance, since otherwise the sum of independent copies would have to
be gaussian as a limiting distribution by the central theorem. In fact, it is known that any p-stable
distribution must have tail bounds P(|Z| > λ) = O(1/(1 + λ)p) for all λ > 0 [Nol10] (see also
[Nel11, Theorem 42]); this implies that such distributions cannot exist for p > 2 (since otherwise
they would have bounded variance, violating the central limit theorem). For p < 2 in fact the tail
is precisely Θ(1/(1 + λ)p), so they do not have bounded absolute qth moments for any q ≥ p.



4.3. NORM ESTIMATION 55

Though p-stable distributions do not necessarily have closed form density functions, they do
have closed form characteristic functions, i.e. ϕ̂Z(t) = E eitZ (i.e. the Fourier tranform of the pdf).
Namely, ϕ̂Z(t) = e|t|

p
. Note then for the random variable xiZi, ϕ̂xiZi(t) = E ei(txi)Zi = e|xi|

p|t|p .
Since adding two independent random variables convolves their pdfs, it pointwise multiplies their
characteristic functions, so that

∑
i xiZi has characteristic function e‖x‖

p
p·|t|p .

We first describe an idealized version of Indyk’s p-stable sketch. Pick a matrix Π ∈ Rm×n where
the Πi,j = Zi,j are i.i.d. p-stable random variables, scaled so that P(Z ∈ [−1, 1]) = 1/2 (note that
scaling a p-stable distribution by a fixed constant preserves p-stability, i.e. if Z follows a p-stable
distribution then αZ follows a p-stable distribution as well). We maintain y = Πx in memory, and
we estimate ‖x‖p as median1≤r≤m |yi|.

Analysis. Let IS : R→ R be the indicator of the set S, i.e. IS(x) = 1 if x ∈ S, and it equals zero
otherwise. Then since yr/‖x‖p is p-stable with scale factor 1, we have E I[−1,1](yr/‖x‖p) = 1/2 for
each r ∈ [m]. Because the p-stable distribution has a pdf which is both bounded and continuous
(this is known; see full discussion in [KNW10a]), we also have the following two facts by linearity
of expectation:

• E
[∑m

r=1 I[−1−ε,1+ε](
yr
‖x‖p )

]
= m

2 + Θ(εm) ≥ m
2 + c1εm.

• E
[∑m

r=1 I[−1+ε,1−ε](
yr
‖x‖p )

]
= m

2 −Θ(εm) ≤ m
2 + c2εm.

Note that if
∑

r I[−1−ε,1+ε](yr/‖x‖p) > m/2 then strictly more than half the yr satisfy |yr| ≤
(1 + ε)‖x‖p, and similarly

∑
r I[−1−ε,1+ε](yr/‖x‖p) implies that strictly less than half the yr satisfy

|yr| ≤ (1−ε)‖x‖p. Thus if both these events happen simultaneously, we indeed have that the median
estimate is (1 ± ε)‖x‖p. To show that this happens with good probability, we use Chebyshev’s
inequality. Specifically, for any r we have V ar[IS(yr/‖x‖p)] ≤ 1 since the range of IS is [0, 1].
Thus the variances of the above sums are each at most m by independence of the yr. Chebyshev’s
inequality and a union bound thus implies that the probability that either sum deviates from its
expectation by more than 3

√
m is at most 2/9. We can then ensure 3

√
m < max{c1εm, c2εm} by

picking m ≥ 9(min{c1, c2})−2/ε2.

Of course, the two main issue with this idealized algorithm, as in Subsection 2.2.1, are precision
and independence. The Πi,j are real numbers, but our computer can only perform finite-precision
arithmetic; this can be dealt with by simply rounding the Πi,j to appropriate precision before doing
computation. We will not delve into those details here as they are fairly routine, and we instead
refer the reader to [KNW10a]. Regarding the independence, we used independence in two places:
(1) to argue that the variance of the sum of indicators equals the sum of the variances, and (2) to
know that yr/‖x‖p is p-stable, so that we can estimate E IS(yr/‖x‖p). For (1), note this holds even
if the random variables summed are only 2-wise independent. Thus we can simply have that the
random seeds s1, . . . , sm used to generate the rows of Π are not fully independent, but rather is a
simply from a 2-wise independent sample space. For (2), it is known (though unfortunately quite
complicated to prove so we will not do so here), that k-wise independence suffices for k = O(1/εp).

Theorem 4.3.3 ([KNW10a]). Let Z1, . . . , Zn be i.i.d. from Dp, and let Y1, . . . , Yn be k-wise inde-
pendent from Dp. Then for any fixed x ∈ Rn,

sup
t∈R

∣∣∣∣∣E I(−∞,t](
∑
i

xiZi)− E I(−∞,t](
∑
i

xiYi)

∣∣∣∣∣ < O(1/k1/p).



56 CHAPTER 4. LINEAR SKETCHING

Theorem 4.3.3 says that the CDFs of the distributions of
∑

i xiZi and
∑

i yiZi are close every-
where. Note I(a,b] is simply I(∞,b]− I(∞,a], so Theorem 4.3.3 implies that the amount of probability

mass in any interval is the same in the two distributions up to an additive O(1/k1/p). We have only
talked about k-wise independence for uniform distributions in this course, but note that any distri-
bution can be generated from a uniform random variable in [0, 1] via the inverse CDF (which in our
case we will discretize to finite precision, i.e. integer multiples of γ for some small γ). Specifically
for p-stable random variables, it is known how to do this generation efficiently [CMS76].

4.3.3 Branching programs and pseudorandom generators

Although Indyk’s p-stable sketch could be derandomized to obtain an optimal algorithm via k-wise
independence, it is unfortunately quite technical to show that this is true, and it was not even
known until about a decade after Indyk published his algorithm. It turns out though that there
is a simple generic way to derandomize many streaming algorithms, and that is by modeling their
execution as that of a Read-Once Branching Program (ROBP) then using a generic Pseudorandom
Generator (PRG) against such objects, such as Nisan’s PRG [Nis92].

0 1 1 0

ES

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

Figure 4.1: ROBP calculating the sum of 4 input bits. The start node is labeled S. There are 5
layers (including the start node layer), where the kth layer (0-indexed) keeps track of the partial
sum of the first k bits. As the partial sum is always between 0 and 4, we thus have 5 nodes per
layer. The input bits are “0 1 1 0”, written at the top, and these bits cause us to transition along
the edges colored red to land at a particular final vertex (labeled E, corresponding to a sum of 2).

Definition 4.3.4. A read-once branching program is a directed, layered graph with layers 0, 1, 2, . . . , L.
Here L is called the length. The 0th layer has just one vertex, called the start vertex, and every
other layer has the same number of vertices W , called the width. Each vertex, except in layer L,
has out-degree exactly d for some value of d, and each edge goes into a vertex in the next layer. The
out-edges from a given vertex are also labeled 0, 1, . . . , d− 1. Vertices in layer L have no out-edges.
Such an ROBP can be viewed as computing a function f : {0, 1, . . . , d−1}L → [W ], where on input
(x1, x2, . . . , xL) ∈ {0, 1, . . . , d − 1}L, the evaluation of the function is the index of the vertex one



4.3. NORM ESTIMATION 57

arrives at in the final layer by starting at the start vertex and in the ith step following the edge
out of the current vertex with label xi.

For example, Fig. 4.1 describes an ROBP which calculates the sum x1 +x2 +x3 +x4 of 4 input
bits. L is 4 and the width W is 5. Essentially each layer is simply keeping track of the running sum
of the input bits seen so far (which is a number in {0, 1, 2 . . . , 4} and hence at most 5 states are
needed per layer). The left layer with a yellow S is the start vertex, and the red highlighted path
shows the evaluation of f on input (0, 1, 1, 0). The vertex in layer L boxed in yellow denotes the
output state, which here we imagine is indexed as 2 (counting vertices from top to bottom, starting
at 0). Note that one can imagine an ROBP of width W as representing a computation using only
dlog2W e bits of memory, since that is the memory required to remember the current state.

In the case of for example Indyk’s p-stable sketch, imagine that we generate each Πi,j from a
uniform random number in [0, 1] with only b bits of precision, i.e. an integer multiple of 1/2b, and
we round the resulting p-stable random variable so that it only requires b′ bits of precision to store.
Then since the output of the algorithm is invariant under permutation of the stream (since it applies
a linear sketch), the algorithm’s estimate of ‖x‖p would be identical if we saw all updates to i = 1
first, then i = 2, etc. Consider the following computation which sees the entries of Π in row-major
order, i.e. we see the entries in the order Π1,1,Π1,2, . . . ,Π1,n,Π2,1, . . . ,Π2,n, . . . ,Πm,1, . . . ,Πm,n

(more specifically, we see the b-bit integers that specify each of these entries).

Indyk ROBP:

clow ← 0
chigh ← 0
for r = 1, . . . ,m:

C ← 0
for j = 1, . . . , n:

C ← C + xj ·Πr,j

if C ≤ (1− ε)‖x‖p:
clow ← clow + 1

if C ≤ (1 + ε)‖x‖p:
chigh ← chigh + 1

One can model the evolution of the memory state of Subsection 4.3.3 as a ROBP with d = 2b,
L = mn, and the width sufficiently large to remember C, clow, chigh. If each xj is an integer bounded
by T in magnitude, then we can store C using b′ + log(nT ) bits of precision. Also clow, chigh are
always integers in the set {0, 1, . . . ,m}. Thus the total space we need to identify our current state
(i.e. a vertex in a layer) is dlog2W e = O(b′+log(nT )+logm) bits. The final state reveals clow, chigh,
which is the number of r such that |yr| ≤ (1 − ε)‖x‖p and |yr| ≤ (1 + ε)‖x‖p, respectively. As
seen in Subsection 4.3.2, with probability 7/9 these are simultaneously strictly less than m/2 and
strictly more than m/2.

The goal of a PRG is to preserve the distribution over final states with good probability, so
that feeding the ROBP truly random bits to generate the Πi,j versus pseudorandom bits results in
a distribution over vertices in the final layer that is almost distinguishable.

Definition 4.3.5. The total variation distance between two probability distributions D,D′ is ‖D−
D′‖TV := supS |PX∼D(X ∈ S)− PX′∼D′(X ′ ∈ S)|.

From our perspective, we can imagine that D generates a sequence X of nmb independent,
uniform bits that specifies the Πi,j , and D′ generates a pseudorandom sequence X ′ of nmb bits. We
can define S to be the set of inputs x (i.e. the nmb bits specifying all of Π) such that for f being
the ROBP representing Subsection 4.3.3, f(x) leads to a memory state that implies Indyk’s output



58 CHAPTER 4. LINEAR SKETCHING

is correct, i.e. (1±ε)‖x‖p. Then if D,D′ have TV-distance at most ε, then using the pseudorandom
bits generated by D′ must still lead to a correctness probability of at least 2/3 − ε. Nisan’s PRG
gives us just that.

Theorem 4.3.6. Let UA,t denote the uniform distribution on At. For any S,L ≥ 1 there exists
a function Gnisan : {0, 1}s → ({0, 1}S)L for s = O(S logL) such that for any f calculated by an
ROBP with width 2S, degree d = 2S, and length L,

‖f(U{0,1}S ,L)− f(Gnisan(U{0,1},s))‖TV ≤ exp(−Ω(S)).

Furthermore, for any x ∈ {0, 1}s and any j ∈ [L], (Gnisan(x))j can be computed in space O(S logL).

We can thus derandomize Indyk’s algorithm by letting the Πi,j be specified by Gnisan applied
to a short s-bit random string for s = O(S logL) = O((b′ + log(nT ) + logm) · log(mn)) = O((b′ +
log(nT )) log n) bits since m ≤ n. It can be shown that one can take b′ = O(log(nT/ε)) [KNW10a],
leading to O(log(nT/ε) · log n) bits overall to specify a sufficiently good pseudorandom matrix Π.
Overall this leads to an algorithm for `p norm estimation using O(ε−2 log(nT/ε) + log(nT/ε) log n)
bits of memory (the first summand is for maintaining the actual sketch, and the second is for re-
membering the seed to Nisan’s PRG). Using k-wise independence instead of Nisan’s PRG eliminates
the second term, leading to a space-optimal algorithm (matching a lower bound of [KNW10a]), at
the cost of requiring a much more complicated analysis.



Chapter 5

Johnson-Lindenstrauss Transforms

The following “Johnson-Lindenstrauss lemma” (JL lemma) has been highly impactful in the design
of algorithms for high-dimensional data.

Theorem 5.0.1 (JL lemma [JL84]). For any ε ∈ (0, 1) and any X ⊂ Rd for |X| = n finite, there
exists an embedding f : X → Rm for m = O(ε−2 log n) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22. (5.1)

Note one can take the square root of all terms in Eq. (5.1) to say the `2 norm itself is preserved
(and not the square), which affects ε by roughly a factor of 2; we write the squared version as it
makes some later arguments less clumsy.

Remark 5.0.2. For two metric spaces (X, dX), (Y, dY ), a map f : X → Y is often called an
embedding or metric embedding. Let ρ be the smallest value such that there exists some fixed value
c such that

∀x, y ∈ X, c · dY (f(x), f(y)) ≤ dX(x, y) ≤ ρc · dY (f(x), f(y)).

If such ρ exists, then we say it is the distortion of f ; if it does not exist, then we say that f has
unbounded distortion. The JL lemma thus is the statement that any n-point subset of Euclidean
space embeds into m-dimensional Euclidean space for m = O(ε−2 log n) with distortion at most
1 + ε (specifically as written above, it would be

√
(1 + ε)/(1− ε), but this is 1 +O(ε) and can be

made at most 1 + ε by changing m by a constant factor).

A common use of the JL lemma is in the design of approximate algorithms for high-dimensional
computational geometry problems. The idea is that given some input X of a set of high-dimensional
vectors, rather than solve the computational problem on X we can instead solve it on f(X) for
an embedding f as in the JL lemma. Then presumably, since f(X) lives in lower dimension, the
algorithm is faster.

Consider as one example the k-means clustering example. In this problem we have input X =
{x1, . . . , xn} ⊂ Rd and a given integer parameter k > 1, and we would like to return y1, . . . , yk ∈ Rd
minimizing

n∑
i=1

min
1≤j≤k

‖xi − yj‖22.

Any choice of the yj ’s induce a Voronoi partition P = (P1, . . . ,Pk) on X: Pr is the set of all i such

59



60 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

that yr = argminj ‖xi − yj‖22. One can then rewrite the k-means objective as

min
k−partitions P

min
y1,...,yk

n∑
i=1

‖xi − yπP (i)‖22 = min
k−partitions P

min
y1,...,yk

k∑
j=1

∑
i∈Pj

‖xi − yj‖22. (5.2)

where πP(i) denotes the partition j such that i ∈ Pj . One can show then via calculus that for
any fixed P, the optimal choice of the centers yj are the centroids µj := (1/|Pj |)

∑
i∈Pj xi. Thus

Eq. (5.2) can be rewritten, and via some simple subsequent manipulations one obtains that the
objective is

min
k−patitions P

k∑
j=1

∑
i∈Pj

‖xi − µj‖22 = min
k−patitions P

k∑
j=1

1

|Pj |
∑

i<i′∈Pj

‖xi − xi′‖22. (5.3)

From Eq. (5.3) it is apparent that if an embedding f preserves all squares distances within X up to
1±ε, then the cost of any clustering (i.e. any partition P) is similarly preserved. Thus we obtain an
approximately optimal clustering by mapping X down to low dimension via the JL lemma, solving
k-means there, then using the discovered clustering partition even for the original high-dimensional
X. Thus, for (1+ε)-approximation it suffices to solve k-means clustering in dimension O(ε−2 log n).

All known proofs of the JL lemma first prove the following “Distributional Johnson-Lindenstrauss
lemma” (DJL lemma).

Lemma 5.0.3 (DJL lemma). For any ε, δ ∈ (0, 1/2) and integer d > 1, there exists a distribution
Dε,δ over matrices Π ∈ Rm×d for m = O(ε−2 log(1/δ)) such that for any fixed z ∈ Rd with ‖z‖2 = 1,

P
Π∼Dε,δ

(|‖Πz‖22 − 1| > ε) < δ.

The JL lemma is then a corollary of the DJL lemma for the following reason: we set δ < 1/n2 and
pick a random Π as in the DJL lemma. Then for any x 6= y ∈ X, we set zx,y := (x−y)/‖x−y‖2. The
DJL lemma implies P(|‖Πzx,y‖22 − 1| > ε) < δ, which is equivalent to P(|‖Π(x− y)‖22 − ‖x− y‖22| >
ε‖x − y‖22) < δ. By a union bound, the probability there exists some x 6= y ∈ X such that
‖Π(x− y)‖22 /∈ [(1− ε)‖x− y‖22, (1 + ε)‖x− y‖22] is at most

(
n
2

)
δ < 1. Thus there exists a Π∗ such

that ‖Π∗(x− y)‖22 ∈ [(1− ε)‖x− y‖22, (1 + ε)‖x− y‖22] for all x, y ∈ X. We define f(x) = Π∗x.
The main task is thus to prove the DJL lemma.

5.1 Proof of the Distributional Johnson-Lindenstrauss lemma

We prove the DJL lemma using the Hanson-Wright inequality, specifically the tail version (see
Corollary 1.1.16). We will let Dε,δ be the distribution over matrices Π with i.i.d. entries Πr,i =
σr,i/
√
m, where the σr,i are independent Rademachers (i.e. uniform in {−1, 1}). Define the matrix

Bz =
1√
m
·


−z>− 0 · · · 0

0 −z>− · · · 0
...

...
...

0 0 · · · −z>−

 . (5.4)

Define the vector σ ∈ {−1, 1}md by σ = (σ1,1, σ1,2, . . . , σ1,d, . . . , σm,1, . . . , σm,d). Then Πz = Bzσ.
Thus ‖Πz‖22 − 1 = ‖Bzσ‖22 − 1 = σ>B>z Bzσ − Eσ>B>z Bzσ. Defining Az := B>z Bz and applying
Corollary 1.1.16,

P(|σ>Azσ − Eσ>Azσ| > ε) . e−Cε
2/‖Az‖2F + e−Cε/‖A‖. (5.5)



5.2. LOWER BOUND 61

We thus need to bound ‖Az‖F and ‖Az‖.
We see Az is an md × md block-diagonal matrix with m blocks, where each block equals

(1/m)zz>. The squared Frobenius norm is (1/m2)
∑m

r=1 ‖zz>‖2F = (1/m2)
∑m

r=1

∑
i,j z

2
i z

2
j =

(1/m)‖z‖42 = 1/m. We also have ‖Az‖ is its largest singular value. Since Az is real and sym-
metric, the spectral theorem implies all its eigenvalues are real. Thus the largest singular value
is the largest magnitude of any eigenvalue. Since Az is block-diagonal, its eigenvalues are the
eigenvalues of each block. Thus we just need to bound the largest eigenvalue of (1/m)zz>. This
is a rank-1 matrix whose sole eigenvector with nonzero eigenvalue is z, which has corresponding
eigenvalue (1/m)‖z‖22 = 1/m. Thus overall, Eq. (5.5) is bounded by

e−Cε
2/m + e−Cε/m

which is at most δ for m = Ω(ε−1 log(1/δ) + ε−2 log(1/δ)) = Ω(ε−2 log(1/δ)), as desired.

5.2 Lower bound

One can ask whether the m = Ω(ε−2 log n) is optimal: does there exist a set X of size n such that
any (1 + ε)-distortion embedding of X with the Euclidean metric into m-dimensional Euclidean
space must have m = Ω(ε−2 log n). The first lower bound for this problem was in the original
JL paper itself [JL84], which showed that for ε smaller than some fixed constant, m = Ω(log n)
is required. We present their argument here since it uses volumetric reasoning that will be useful
later for the optimal lower bound in Subsection 5.2.2.

The point set for the original JL lower bound was X = {0, e1, . . . , en−1} ⊂ Rn, where ei is the
ith standard basis vector (1 in the ith position and 0 elsewhere). Suppose f : X → Rm satisfies

∀x, y ∈ X, (1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2.

Without loss of generality we may assume f(0) = 0 (else translate the image of f by f(0), which
does not change its distortion). efine ẽi := f(ei). Then since ‖ẽi−0‖2 = ‖ẽi−f(0)‖2 = (1±ε)‖ei‖2,
we have that 1 − ε ≤ ‖ẽi‖2 ≤ 1 + ε. We also have that for i 6= j, ‖ẽi − ẽj‖2 ≥ (1 − ε)

√
2, so the

radius (1− ε)
√

2/2 balls around the ẽi have disjoint interior. Meanwhile, each of these balls is fully
contained in a radius (maxi ‖ẽi‖2) + (1 − ε)

√
2/2 ≤ (1 + ε + (1 − ε)

√
2/2)-radius ball about the

origin. Thus, for Bd(a, r) denoting the ball of radius r about point a under metric d,

vol(B`2(0, 1 + ε+ (1− ε)
√

2/2)) ≥ vol(∪n−1
i=1 B`2(ẽi, (1− ε)

√
2/2))

=
n−1∑
i=1

vol(B`2(ẽi, (1− ε)
√

2/2)) (by disjointness of the balls)

= (n− 1) · vol(B`2(0, (1− ε)
√

2/2)),

which implies n− 1 ≤ (1+ε+(1−ε)
√

2/2

(1−ε)
√

2/2
)m, so that m = Ω(log n) as long as ε < 1 is a fixed constant.

This follows since the volume ratio of a radius-r1 ball and radius-r2 ball in dimension m is (r2/r1)m.
Historically, after the original JL lower bound, [Alo03] proved an improved lower bound of

m = Ω(min{n, ε−2 logn
log(1/ε)}) that depended on ε. It was though slightly suboptimal in m (by a

log(1/ε) factor). The optimal lower bound of Ω(min{n, ε−2 log n}) was proven in [LN16] but only
against embeddings f which are linear. The linearity assumption was removed and a lower bound
of m = Ω(ε−2 log n) was proven in [LN17] againts all embeddings, even nonlinear ones, under the
assumption 1/ε2 ≤ min{n, d}.99. This assumption is almost optimal, in the sense that there is



62 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

always an upper bound of min{n− 1, d}: m = d is achievable with ε = 0 by the identity map, and
we can also always translate the points so that one point is zero (this does not change pairwise
distances), so that the points span an at most (n−1)-dimensional subspace, also implying that m =
n−1 is achievable with ε = 0. Thus we can never hope to prove an ε−2 log n lower bound in the case
that this expression is larger than min{n− 1, d}. A lower bound of m = Ω(min{n, d, ε−2 log(ε2n)})
was then proven in [AK17] for all ε.

5.2.1 Distributional JL

One can also ask whether the DJL lemma (Lemma 5.0.3) is optimal. Note that even if so, it does
not imply that the JL lemma is optimal, because in principle one could achieve improved bounds
for Euclidean dimensionality reduction without using random linear maps as in the DJL lemma
(though it turns out not be the case, as we will see in Subsection 5.2.2). The DJL lemma was in fact
shown optimal in [JW13, KMN11]. The lower bound of [JW13] is via communication complexity
and is more general, in that it is a lower bound applying to any communication protocol that allows
for estimating `2 norms with small failure probability. We sketch here the lower bound argument
of [KMN11].

Theorem 5.2.1. Let n, d > 1 and ε, δ ∈ (0, 1/2) be fixed. Suppose Dε,δ is a distribution over Rm×d
such that for all z ∈ §d−1 (the unit sphere),

P
Π∼Dε,δ

(|‖Πz‖22 − 1| > ε) < δ.

Then m = Ω(min{d, ε−2 log(1/δ)}).

Proof sketch. We use (the easy direction of) Yao’s minimax principle. Specifically,

∀z ∈ Sd−1 P
Π∼Dε,δ

(|‖Πz‖22 − 1| > ε) < δ

=⇒ P
z∼Z

P
Π∼Dε,δ

(|‖Πz‖22 − 1| > ε) < δ (for any distribution Z over Sd−1)

=⇒ P
Π∼Dε,δ

P
z∼Z

(|‖Πz‖22 − 1| > ε) < δ

=⇒∃Π ∈ Rm×d P
z∼Z

(|‖Πz‖22 − 1| > ε) < δ.

One then simply shows for an appropriate “hard distribution” Z, such Π cannot exist unless
m = Ω(min{d, ε−2 log(1/δ)}). It turns out one can show this for the hard distribution of Z simply
being a uniform vector over the sphere.

5.2.2 Optimal JL lower bound

Before we prove the optimal JL lower bound of [LN17], we introduce some necessary background
from convex geometry.

Definition 5.2.2. A convex body is a compact, convex subset of Rd with non-empty interior. Recall
K ⊂ Rd is convex if for all x, y ∈ K, the straight line from x to y is fully contained in K. It is
compact if it is closed (contains all its limit points) and bounded (this is not the general definition
of compactness, but it’s equivalent for Rd). A convex body is symmetric if x ∈ K ⇔ −x ∈ K. Note
a symmetric convex body must thus contain 0 (look at the line between x and −x for some x ∈ K,
which must exist since K has non-empty interior).



5.2. LOWER BOUND 63

Symmetric convex bodies are in 1-to-1 correspondence with normed spaces in Rd. Specifically,
given a norm ‖ · ‖ we can define a symmetric convex body K = {x : ‖x‖ ≤ 1}. Given a symmetric
convex body K, we can define a norm ‖ · ‖K by ‖x‖K = sup{t : tx ∈ K}.

Definition 5.2.3 (entropy numbers, ε-nets). Let (X, dX) be a metric space and T ⊆ X. For
ε ≥ 0, an ε-net of T is a subset T ′ ⊆ X such that for all x ∈ T , there exists x′ ∈ T ′ such that
dX(x, x′) ≤ ε. We define the entropy number N (T, dX , ε) as the size of the smallest ε-net of T under
metric dX . Given a set A and symmetric convex body K, both in Rd, we abuse notation and also
define N (A,K) to be the minimum number of translations of K required to cover every point in
A. Note that N (T, d‖·‖K , ε) = N (T, εK).

The following lemma is a standard volumetric argument.

Lemma 5.2.4. Let B be the unit ball of some norm ‖ · ‖ in Rd. Then N (B, ‖ · ‖, ε) ≤ (1 + 2/ε)d.

Proof. We define the packing number P(A, d, ε) as the maximum number of radius-ε pairwise dis-
joint balls under metric that can fit in A, centered at points in A. Then consider an optimal
packing for P(B, ‖ · ‖, ε/2) with centers c1, . . . , cN . The union of all such balls fits inside a ball
of radius 1 + ε/2, and thus vol(B‖·‖(0, 1 + ε/2)) ≥ N · vol(Bcdot‖(0, ε/2)). Thus N is at most the

ratio of those volumes, which is (1 + 2/ε)d. Meanwhile, the balls of radius ε about the ci must
cover B completely. This is because if there is some x ∈ B which is not covered, then ∀i ∈ [N ],
B‖·‖(x, ε/2) ∩ B‖·‖(ci, ε/2) = ∅. But then we could have added x to the packing, violating maxi-
mality of the packing, a contradiction.

Next, we make a simple observation relating the additive preservation of dot products and
Euclidean embeddings with low distortion.

Lemma 5.2.5. Let X ⊂ Sd−1 be such that it contains 0 and f : X → Rm satisfies f(0) = 0 and

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22. (5.6)

Then

∀x, y ∈ X\{0}, |〈f(x), f(y)〉 − 〈x, y〉| ≤ 3ε. (5.7)

Proof. We have

‖x− y‖22 = ‖x‖22 + ‖y‖22 − 2〈x, y〉 = 2− 2〈x, y〉

and

‖f(x)− f(y)‖22 = ‖f(x)‖22 + ‖f(y)‖22 − 2〈f(x), f(y)〉 = 1± ε+ 1± ε− 2〈f(x), f(y)〉.

Subtracting and rearranging, we have

|〈f(x), f(y)〉 − 〈x, y〉| ≤ 1

2

[
2ε+ ε‖x− y‖22

]
≤ 3ε.

The above inequality holds by the triangle inequality since ‖x− y‖2 ≤ ‖x‖2 + ‖y‖2 = 2.

We now outline the proof of the lower bound, which is a compression argument (as in Sec-
tion 3.1). We define a collection X of n-point sequences in Rd. We show that if for each X ∈ X
there exists an embedding fX : X → Rm satisfying Eq. (5.7) for m � ε−2 log n with error ε, then
there must be an injection g : X → {0, 1}S for some S < log2 |X |. This is a contradiction, and
thus there must be some X ∈ X such that no such fX exists. By Lemma 5.2.5, there must thus



64 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

be no embedding with distortion at most 1 + ε/3 into such small m. The theorem then follows by
applying the argument to ε′ = 3ε.

Define k = b1/(100ε2)c and yS = (1/
√
k)
∑

i∈S ei. We let X consist of all point sequences of
the form X = (0, e1, e2, . . . , ed, yS1 , . . . , ySn−d−1

) where the Si are subset of [d] of size k each. Thus

|X | =
(
d
k

)n−d−1
. Note that 〈ei, yS〉 is either 0 (if i /∈ S) or 10ε (if i ∈ S). Thus knowing 〈ei, ySj 〉

for each i, j is enough to determine X completely. We will show that if the desired fX exists for
all X ∈ X (i.e. preserving these dot products up to ±ε), embedding into dimension m, then there
exists an injection g : X → {0, 1}O(nm), and thus we must have nm = Ω(log2 |X |) = Ω(nk log(d/k)).
Thus m = Ω(k log(d/k)). We first assume d = n/ log(1/ε) and 1/ε2 < n.99. Thus we have
m = Ω(ε−2 log n), as desired. We now simply must show how to define such g.

We would like to set g(X) to be the concatenation of entries of the sequence of vectors
fX(0), fX(e1), . . . , fx(ed), fX(yS1), . . . , fX(ySn−d−1

), which would be nm numbers. Then since fX
preserves dot products up to additive±ε, we can know whether i ∈ Sj based on whether 〈fX(ei), fX(ySj )〉
is either at most ε or at least 9ε. Unfortunately this does not work, since then g maps X to nm real
numbers, but we want a map into O(nm) bits. We now show how to get around this in progressively
better ways. We henceforth refer to fX as simply f .

Constructing g: first attempt. Our first approach is to round each entry of f(x) to the
nearest integer multiple of γ for some small γ > 0. Since f(x) for x 6= 0 has norm that is 1 ± ε,
each entry of f(x) must be in the interval [−1 − ε, 1 + ε]. Thus there are at most d(2 + 2ε)/γe =
O(1/γ) possible multiples of γ that each entry could be rounded to. Thus, after rounding, the
the sequence f(0), f(e1), . . . , f(ed), f(yS1), . . . , f(ySn−d−1

) consumes at most O(nd log(1/γ)) bits to
specify. Meanwhile, the dot products after rounding are

m∑
i=1

(f(ei)± γ)(f(yS)± γ) = 〈f(ei), f(yS)〉 ± γ‖f(ei)‖1 ± γ‖f(yS)‖1 ±mγ2

By Cauchy-Schwarz, ‖f(ei)‖1 ≤
√
m‖f(ei)‖2 ≤ (1 + O(ε))

√
m, and similarly for ‖f(yS)‖1. Thus

the total additive error in computing 〈f(ei), f(yS)〉 is at most ε for γ = Θ(ε/
√
m). Recalling

〈f(ei), f(yS)〉 approximates 〈ei, yS〉 up to additive ±ε, we thus know 〈ei, yS〉 up to additive ±2ε.
We can thus declare i ∈ S if our estimated dot product is at least 8ε, and i /∈ S if it is at most
2ε. Our g then maps into O(nm log(1/γ)) = O(nm log(m/ε)) bits. Since this quantity must be at
least Ω(nε−2 log n), we have m = Ω(ε−2 logn

log(1/ε)+log logn).

Constructing g: second attempt. In the first attempt we picked a γ-net B′ of B`2(0, 1 + ε)
under the `∞ norm and rounded each f(x) to the closest element in B′. What if we instead picked

B′′ to be a γ-net under `2 and not `∞? Let f̃(x) be the closest point to f(x) in B′′ (under `2).
Then

〈f̃(x), f̃(y)〉 = 〈f(x) + (f̃(x)− f(x)), f(y) + (f̃(y)− f(y))〉

= 〈f(x), f(y)〉+ 〈f(x), f̃(y)− f(y)〉+ 〈f̃(x)− f(x), f(y)〉+ 〈f̃(x)− f(x), f̃(y)− f(y)〉
= 〈f(x), f(y)〉+O(γ)

with the last inequality holding by Cauchy-Schwarz, since ‖f̃(y) − f(y)‖2, ‖f̃(x) − f(x)‖2 ≤ γ.

Thus if we set γ = cε for a sufficiently small constant c, we have 〈f̃(x), f̃(y) = 〈f(x), f(y)〉 ± ε.
Thus again we can thus declare i ∈ S if 〈f̃(x), f̃(y)〉 is at least 8ε, and i /∈ S if it is at most 2ε.



5.3. SPEEDING UP JOHNSON-LINDENSTRAUSS TRANSFORMS 65

By Lemma 5.2.4 B′′ has size at most O(1/ε)m, and thus the number of bits to specify (f(x))x∈X
is O(nm log(1/ε)), which must be Ω(log |X |). Thus m = Ω(ε−2 logn

log(1/ε)). This recovers the lower

bound of Alon [Alo03], but with a totally different proof.

Constructing g: final attempt. We now remove the log(1/ε) in the denominator in the previous

attempt. Recall the second attempt showed that it was enough to know 〈f̃(ei), f̃(ySj )〉 for each

i ∈ [d], j ∈ [n− d− 1] to recover X ∈ X . Thus if we define vj ∈ Rd by vj := 〈f̃(ei), f̃(ySj )〉, then it
is enough to know all the vj . In fact, it is even enough to know a set of ṽj such that ‖ṽj−vj‖∞ ≤ ε
for each j. That is, we only need to know roundings of the vj in an ε-net under the `∞ metric,
since then we can distinguish whether i ∈ Sj by whether (ṽj)i is at most 3ε or at least 7ε.

If we define a matrix A ∈ Rd×m to have its ith row be f̃(ei), then we see that vj = AySj . Thus
the vj live in the subspace E which is the column space of A, and since A has at most m columns,

we have dim(E) ≤ m. Also since 〈f̃(ei), f̃(yS)〉 = 〈f(ei), f(yS)〉 ± ε = 〈ei, yS〉 ± 2ε, we know that
‖vj‖∞ ≤ 12ε for each j. Thus if we define K := E ∩B`d∞(0, 12ε), then vj ∈ K for each j. Now the
beauty: K is a symmetric convex body, so it defines a norm! Thus if we let K ′ be a 1/12th-net of K
in the K-norm, it implies that for any v ∈ K there exists ṽ ∈ K ′ such that ‖v− ṽ‖∞ ≤ ε. This will
be our definition of the ṽj : simply the rounding of the vj to the closest points (under the K-norm)
in K ′. The size of K ′ is O(1 + 2/(1/12))m = O(1)m since K is m-dimensional (Lemma 5.2.4), and
thus ṽj can be specified in O(m) bits. Thus we all ṽj for every j ∈ [n − d − 1] can be specified in
O(nm) bits combined!

There is one slight catch: recall in compression arguments we typically show that the “com-
pression” is an injection by showing that it is possible to invert. But for the decompresser to
invert, they will need to know which body K we are talking about. For that, they need to know
the matrix A, which depends on f = fX and thus depends on X. We accomplish this by simply

writing down A explicitly, row-by-row; each f̃(ei) takes O(m log(1/ε)) bits, so in total this takes
O(dm log(1/ε)) = O(nm) bits since d = n/ log(1/ε).

Removing the assumption d = n/ log(1/ε). Above we showed how to obtain the optimal lower
bound when d = n/ log(1/ε). What about for other d? Showing a hard set with larger d exists
is easy: we simply take the hard point set in dimension n/ log(1/ε) then pad all the vectors with
zeroes to make them dimension d.

What about for smaller d? Suppose X is a hard point set in dimension n/ log(1/ε), i.e. any
embedding with distortion (1 + ε)2 = 1 + O(ε) needs target dimension ≥ cε−2 log n. Consider
the set of points f(X) in dimension d′ = O(ε−2 log n) where f : X → Rd′ has distortion at most
1 + ε; such f exists by the JL lemma. Then f(X) must similarly be “hard” (i.e. require target
dimension ≥ cε−2 log n to achieve distortion 1 + ε), since otherwise if one could embed into such
small dimension with low distortion via a mapping g, then g ◦f would be a good embedding for X.

5.3 Speeding up Johnson-Lindenstrauss transforms

Recall one motivation for dimensionality reduction: we have some dataset X ⊂ Rd for d large on
which we would like to solve some computational geometry problem. We would like to map X
down to some f(X) ⊂ Rm for m � d then solve the problem on f(X), which is hopefully faster
than solving it on X since m is much smaller. Achieving m as small as possible is thus important
to solving f(X) quickly, but also important is being able to compute f(X) quickly. That is, given
a point x ∈ X, we would like an f that allows us to compute f(x) quickly.



66 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

The original JL map of [JL84] chose f(z) = Πz, where Π is (scaled) orthogonal projection
onto a random m-dimensional subspace of Rd. Thus we would like to pick a random basis of m
orthonormal vectors. We can accomplish this by picking a gaussian vector g1 ∼ N (0, Id) then
letting the first row of Π be r1 := g1/‖g1‖2. For r2, we pick another g2 ∼ N (0, Id) independently
and define g̃2 = g2 − 〈g2, g1〉g1 then r2 := g̃2/‖g̃2‖2. That is, we first subtract its projection onto
g1 before normalizing to form g2. In general for rj we pick gj , subtract off its projection onto
the span of g1, . . . , gj−1, then normalize (the “Gram-Schmidt process”). In the end, Π is a dense,
unstructured matrix, so computing Πz takes O(md) time. Can we do better?

The first work to provide any improvement in embedding time is Achlioptas [Ach03]. That
work looked at the bound m = Cε−2 ln(1/δ) for DJL and provided a new argument showing that
the best known bound of C is achievable while simultaneously making the matrix Π sparser by
a factor of three. That is, the Πi,j are independent, equal to 1/

√
s with probability 1/6, −1/

√
s

with probability 1/6, and 0 with probability 2/3, for s = m/3. Thus in expectation, 2/3rds of
the entries of Π are non-zero. Since Πz =

∑
i ziΠ

i where Πi is the ith column of Π, one could
potentially perform this computation faster than if Π had been completely dense.

The next improvement came from the “Fast Johnson-Lindenstrauss Transform” (FJLT) of
[AC09]. The main idea here is that if S ∈ Rm×d is a sampling matrix, i.e. a 1 in a random location
per row (and zeroes elsewhere in the row), with rows chosen independently, then E ‖ 1√

m
Sz‖22 = ‖z‖22

for any vector z. Note computing the mapping z 7→ 1√
m
Sz is fast (O(m) time). The problem is that

the variance might be quite high, e.g. if z has its mass concentrated on one or few coordinates. The
FJLT applies a random pre-conditioning operation to z, i.e. z 7→ Rz for a certain random orthog-
onal matrix R, such that ‖Rz‖∞/‖Rz‖2 is small with high probability, which is one mathematical
way to express that Rz is “well-spread”, with no one coordinate having too much mass. One can
then show that conditioning on the event that it is well-spread, 1√

m
SRz has roughly the same norm

as z with high probability. The runtime of the FJLT to embed a vector z is O(d log d+m3), though
subsequent works have improved the m3 term [AL09, AL13, KW11]. We discuss the FJLT further
in Subsection 5.3.2.

The main downside of the FJLT is that it is not fast for sparse inputs z. Sparse data comes up
frequently in data science applications, e.g. representing a document as a “bag of words” (that is,
d may be the size of the dictionary, and for some document D, zD ∈ Rd is defined by zi being the
number of occurrences of word i in D). Since most documents do not contain the entire dictionary, z
is likely sparse. The FJLT works by preconditioning z to eliminate its sparsity with high probability,
so that sampling works. But if z was sparse to begin with, we may hope for running times that
depend on its sparsity as opposed to its dimensionality. One way to achieve this is to let the
embedding matrix Π itself be sparse. If Π has at most s non-zero entries per column, then Πz can
be computed in time O(s · ‖z‖0), where ‖z‖0 := |{i : zi 6= 0}|. It turns out that for the DJL lemma,
m = O(ε−2 log(1/δ)) can still be achieved with s only O(εm) = O(ε−1 log(1/δ)). Thus using that
Πz =

∑
i ziΠ

i, we can compute Πz faster by a factor 1/ε compared with dense Π. The first work
providing an asymptotically sparser embedding matrix was [DKS10], with improvements later in
[KN10, BOR10]. The SJLT bound stated above, which used a different construction from the prior
works, is from [KN14], with a nearly matching lower bound shown in [NN13b]. A simpler proof of
the upper bound was later provided in [CJN18]. We discuss the SJLT further in Subsection 5.3.1.

5.3.1 Sparse Johnson-Lindenstrauss Transform

As mentioned, one natural way to speed up JL is to make Π sparse. If Π has s non-zero entries per
column, then Πx can be multiplied in time O(s · ‖z‖0). The goal is then to make s,m as small as



5.3. SPEEDING UP JOHNSON-LINDENSTRAUSS TRANSFORMS 67

possible.

We consider the CountSketch matrix introduced in Subsection 4.1.2, which was first shown
to provide DJL in [TZ12] as mentioned in Remark 4.3.1. In in the construction Π being the
CountSketch, one picks a hash function h : [d] → [m] from a 2-wise independent family, and a
sequence of bits σ1, . . . , σd ∈ {−1, 1} from a 4-wise independent family. Then for each i ∈ [d],
Πh(i),i = σi, and the rest of the ith column is 0. It was shown in [TZ12] that this distribution
provides DJL for m & 1/(ε2δ). Note that the column sparsity is s = 1 as described here. The
analysis is simply via Chebyshev’s inequality, after doing an expectation and variance calculation.

The reason for the poor dependence in m on the failure probability δ is that we use Chebyshev’s
inequality. We will make improvements by using Hanson-Wright, i.e. a bound on the p-norms of
quadratic forms. Recall that a bound on p-norms gives tail bounds via Markov’s inequality.

To improve the dependence of m on 1/δ, we allow ourselves to increase s. Here we analyze the
Sparse JL Transform (SJLT) [KN14]. This is a JL distribution over Π having exactly s non-zero
entries per column. The analysis we give below can be found in [CJN18].

As previously, without loss of generality we assume z ∈ Rd has ‖z‖2 = 1. Our random Π ∈ Rm×d
satisfies Πr,i = ηr,iσr,i/

√
s for some integer 1 ≤ s ≤ m. The σr,i are independent Rademachers.

The ηr,i are Bernoulli random variables satisfying:

• For all r, i, E ηr,i = s/m.

• For any i,
∑m

r=1 ηr,i = s. That is, each column of Π has exactly s non-zero entries.

• The ηr,i are negatively correlated. That is, for any subset S of [m]×[n], we have E
∏

(r,i)∈S ηr,i ≤∏
(r,i)∈S E ηr,i = (s/m)|S|.

The above is satisfied by the CountSketch, but any distribution satisfying the above criteria would
do. For example, we could also select exactly s entries per column to be non-zero, uniformly without
replacement.

We would like to show the following, which is the main theorem of [KN14].

Theorem 5.3.1. As long as m ' ε−2 log(1/δ) and s ' εm,

∀z : ‖z‖2 = 1, P
Π

(|‖Πz‖22 − 1| > ε) < δ. (5.8)

Proof. Abusing notation and treating σ as an md-dimensional vector,

E = ‖Πz‖22 − 1 =
1

s

m∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jzizj
def
= σ>Az,ησ,

Thus by Hanson-Wright

‖E‖p ≤ ‖
√
p · ‖Az,η‖F + p · ‖Az,η‖‖p ≤

√
p · ‖‖Az,η‖F ‖p + p · ‖‖Az,η‖‖p.

Az,η is a block diagonal matrix with m blocks, where the rth block is (1/s)z(r)(z(r))> but with
the diagonal zeroed out. Here z(r) is the vector with (z(r))i = ηr,izi. Now we just need to bound
‖‖Az,η‖F ‖‖p and ‖‖Az,η‖‖p, where here the p-norm is over the randomness in η.

Since Az,η is block-diagonal, its operator norm is the largest operator norm of any block. The
eigenvalue of the rth block is at most (1/s) ·max{‖z(r)‖22, ‖z(r)‖2∞} ≤ 1/s, and thus ‖Az,η‖ ≤ 1/s
with probability 1.



68 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

Next, define Qi,j =
∑m

r=1 ηr,iηr,j so that

‖Az,η‖2F =
1

s2

∑
i 6=j

z2
i z

2
j ·Qi,j .

We will show for p ' s2/m that for all i, j, ‖Qi,j‖p . p, where we take the p-norm over η. Therefore
for this p,

‖‖Az,η‖F ‖p = ‖‖Az,η‖2F ‖
1/2
p/2

≤ ‖ 1

s2

∑
i 6=j

z2
i z

2
j ·Qi,j‖1/2p

≤ 1

s

∑
i 6=j

z2
i z

2
j · ‖Qi,j‖p

1/2

(triangle inequality)

≤ 1√
m

Then by Markov’s inequality and the settings of p, s,m,

P(|‖Πx‖22 − 1| > ε) = P(|σ>Az,ησ| > ε) < ε−p · Cp(m−p/2 + s−p) < δ.

We now show ‖Qi,j‖p . p, for which we use Bernstein’s inequality (Theorem 1.1.17).
Suppose ηa1,i, . . . , ηas,i are all 1, where a1 < a2 < . . . < as. Now, note Qi,j can be written as∑s
t=1 Yt, where Yt is an indicator random variable for the event that ηat,j = 1. The Yt are not

independent, but for any integer p ≥ 1 their pth moment is upper bounded by the case that the Yt
are independent Bernoulli each of expectation s/m (this can be seen by simply expanding (

∑
t Yt)

p

then comparing with the independent Bernoulli case monomial by monomial in the expansion).
Thus Bernstein applies, and as desired we have

‖Qi,j‖p = ‖
∑
t

Yt‖p .
√
s2/m · √p+ p ' p.

5.3.2 Fast Johnson-Lindenstrauss Transform

Another approach for obtaining fast JL was investigated by Ailon and Chazelle [AC09]. This
approach gives a running time to compute Πx of roughly O(d log d), which is faster than the sparse
JL approach when x is sufficiently dense. They called their transformation the Fast Johnson-
Lindenstrauss Transform (FJLT). A construction similar to theirs, which we will analyze here, is
the m× d matrix Π defined as

Π =
1√
m
SHD (5.9)

where S is an m × d sampling matrix with replacement (each row has a 1 in a uniformly random
location and zeroes elsewhere, and the rows are independent), H is an unnormalized bounded or-
thonormal system, andD = diag(α) for a vector α of n independent Rademachers. An unnormalized
bounded orthonormal system is a matrix H ∈ Rn×n such that H>H = d · I and maxi,j |Hi,j | ≤ 1.
For example, H can be the unnormalized Fourier matrix or Hadamard matrix1. The original FJLT

1The d × d unnormalized Hadamard matrix for d = 2k when using 0-based indexing for entries has Hi,j =

(−1)〈
~i,~j〉 mod 2, where ~i is the k-dimensional binary vector obtained by writing i in binary, 0 ≤ i < d.



5.3. SPEEDING UP JOHNSON-LINDENSTRAUSS TRANSFORMS 69

replaced S with a random sparse matrix P , which has certain advantages; see Remark 5.3.3. For a
vector v ∈ Rd, diag(v) is a d× d diagonal matrix with ith diagonal entry equal to vi.

The motivation for the construction Eq. (5.9) is speed: D can be applied in O(d) time, H
in O(d log d) time (e.g. using the Fast Fourier Transform for the DFT, or a divide-and-conquer
algorithm for the Hadamard transform), and S in O(m) time. Thus, overall, applying Π to any
fixed vector x takes O(d log d) time. Compare this with using a dense matrix of Rademachers,
which takes O(md) time to apply.

The intuition for why the construction works is as follows. We would ideally like to simply set
Π = 1√

m
S since then E ‖Πz‖22 = ‖z‖22. The problem is that the variance may be very large, which

would necessitate us setting m to be large — for example, consider z = e1, or more generally any
vector with most of its `2 mass concentrated in one or few coordinates. Unless m = Ω(d), it is
likely that Sz = 0. To fix this, [AC09] performs a randomized pre-conditioning step motivated by
the so-called “uncertainty principle” from quantum mechanics: a vector and its Fourier transform
cannot both be concentrated in few coordinates. Thus rather than apply S to z, we could perhaps
apply it to Hz where H is a bounded orthonormal system (like the Discrete Fourier Transform).
There is still a problem though: we may have the opposite problem, namely that z has its mass well
spread across all its coordinates, but Hz has its mass all collapsed to one or few coordinates. In
fact, for the Hadamard transform it is possible to construct example z in which both z and Hz have
their mass equally spread on

√
d coordinates, so that either one would requre m = Ω(

√
d) if using a

sampling matrix. The work [AC09] fixes this by introducing randomness into the pre-conditioning
step, namely by first multiplying by the matrix D = diag(α) above. They then show that with
high probability ‖HDz‖∞ is small; conditioned on this event, S then preserves the norm of HDz
with high probability. We show below the proof of [AC09] that for m & ε−2 log(1/δ) log(d/δ), the
random Π described in Eq. (5.9) provides DJL.

Theorem 5.3.2. Let z ∈ Rd be an arbitrary unit norm vector, and suppose 0 < ε, δ < 1/2. Also
let Π = SHD as described above with a number of rows equal to m & ε−2 log(1/δ) log(d/δ). Then

P
Π

(|‖Πx‖22 − 1| > ε) < δ.

Proof. Define y = HDz. Define the event E that ‖y‖∞ ≤
√

2 ln(4d/δ). Note yi =
∑d

j=1Hi,jαjzj .
Then by Khintchine’s inequality (Theorem 1.1.7),

P
α
(|yi| >

√
2 ln(4d/δ)) < 2e

− 2 ln(4d/δ)

2(
∑d
j=1
|Hi,j |2z2j ) =

δ

2d

since |Hi,j | = 1. Thus by a union bound over all i ∈ [d], P(E) ≥ 1 − δ/2. We now upper bound
the conditional probability P(|‖ 1√

m
Sy‖22 − 1| > ε | E), for which we use Bernstein’s inequality

(Corollary 1.1.18).

In the language of Corollary 1.1.18, ‖ 1√
m
Sy‖22 can be expressed as X :=

∑m
i=1Xi where the Xi

are i.i.d., each equal to y2
i /m for a uniformly random i ∈ [d], and bounded by K := 2 ln(4d/δ)/m

when we condition on E . Since ‖y‖22 = d, we have EXi = 1/m so that EX = 1. We also have

EX2 =
∑
i

EX2
i +

∑
i 6=j

(EXi)(EXj)

= m · EX2
1 +m(m− 1)(EX1)2

≤ K + 1



70 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

Since σ2 := V ar[X] = EX2 − (EX)2, we thus have σ2 ≤ K. Therefore by Corollary 1.1.18,

P

(∣∣∣∣∣
∥∥∥∥ 1√

m
Sy

∥∥∥∥2

2

− 1

∣∣∣∣∣ > ε | E

)
. e−C

ε2

K + e−C
ε
K = e

−C ε2m
2 ln(4d/δ) + e

−C εm
2 ln(4d/δ) ,

which is less than δ/2 for m & ε−2 log(1/δ) log(d/δ). Therefore

P

(∣∣∣∣∣
∥∥∥∥ 1√

m
SHDz

∥∥∥∥2

2

− 1

∣∣∣∣∣ ≤ ε
)
≥ P(E) · P

(∣∣∣∣∣
∥∥∥∥ 1√

m
SHDz

∥∥∥∥2

2

− 1

∣∣∣∣∣ ≤ ε | E
)
≥ (1− δ/2)2 > 1− δ.

Remark 5.3.3. Note that the FJLT as analyzed above provides suboptimal m. If one desired
optimal m, one can instead use the embedding matrix Π′Π,where Π is the FJLT and Π′ is, say,
a dense matrix with Rademacher entries having the optimal m′ = O(ε−2 log(1/δ)) rows. The
downside is that the runtime to apply our embedding worsens by an additive m · m′. [AC09]
slightly improved this additive term (by an ε2 multiplicative factor) by replacing the matrix S with
a random sparse matrix P .

Remark 5.3.4. It is possible to improve the analysis to show that in factm & ε−2 log(1/δ) log(1/(εδ))
suffices; see Theorem 9 of the full version of [CNW16].

5.3.3 Krahmer-Ward theorem

Following work of Ailon and Liberty [AL13], Krahmer and Ward [KW11] proved a theorem that
shows that there is a totally different path to analyzing JL matrices of the form 1√

m
SHD as in

Subsection 5.3.2. The analysis of [AC09] can be summarized as: for fixed z, condition on the event
E that HD is “nice”, then show that sampling preserves the norm with high probability given E
(here “nice” meant that ‖HDz‖∞ was small). Krahmer and Ward parenthesize the conditioning in

a different way: they instead show that if 1√
m
SH is “nice”, then

√
m
S HD provides a JL distribution

Dε,δ as in Lemma 5.0.3. The notion of niceness here depends on a notion known as the restricted
isometry property [CT05], which we elaborate on in a later chapter when we discuss compressed
sensing.

Definition 5.3.5. A matrix Π ∈ Rm×d satisfies the (ε, k)-Restricted Isometry Property (or (ε, k)-
RIP) if for all k-sparse vectors z ∈ Rd (i.e. |{i : zi 6= 0}| ≤ k),

(1− ε)‖z‖22 ≤ ‖Πz‖22 ≤ (1 + ε)‖z‖22.

Lemma 5.3.6. For Π ∈ Rm×d and i ∈ [d], let Πi denote the m×d matrix where all columns except
the ith one are zeroed out. For S ⊆ [d] let ΠS denote

∑
i∈S Πi. Then if Π satisfies (ε, k)-RIP,

(a) sup|S|≤k ‖(ΠS)>ΠS − IS‖ ≤ ε

(b) sup|S|+|T |≤k
S∩T=∅

‖(ΠS)>Π>‖ ≤ ε

Proof. (a). Since Πz = Πsupport(z)z, this holds since for real symmetric M we have ‖M‖ =
sup‖z‖2=1 |z>Mz|.

(b). Fix S, T with |S|+ |T | ≤ k. Then ‖(ΠS)>Π>‖ = sup support(z)⊂S,‖z‖2=1
support(w)⊂T,‖w‖2=1

z>Π>Πw. Note

z>Π>Πw = 〈Πz,Πw〉



5.3. SPEEDING UP JOHNSON-LINDENSTRAUSS TRANSFORMS 71

=
1

4
(‖Π(z + w)‖22 − ‖Π(z − w)‖22)

=
1

4
((1± ε)‖z + w‖22 − (1± ε)‖z − w‖22) (Π satisfies (ε, k)-RIP)

=
1

4

(
(1± ε)(‖z‖22 + ‖w‖22 − 〈z, w〉)− (1± ε)(‖z‖22 + ‖w‖22 − 2〈z, w〉)

)
=

1

4
(±2ε‖z‖22 ± 2ε‖w‖22) (〈z, w〉 = 0)

= ±ε.

The following is a known result of Haviv and Regev [HR16], following [CT06, RV08, Bou14],
which we will not cover the proof of here.

Theorem 5.3.7. Let H ∈ Rd×d be a bounded orthonormal system, and let S ∈ Rm×d be a sampling
matrix: its rows are independent, with each row having a 1 in a uniformly random location and
zeroes elsewhere. Then for m = O(ε−2 log2(1/ε)k log2(k/ε) log d), 1√

m
SH satisfies (ε, k)-RIP with

probability at least 1− exp(−Ω(log(k/ε) · log d)).

Theorem 5.3.8. The following holds for some universal constants c, C > 0. Suppose ε, δ ∈ (0, 1/2)
are such that Π ∈ Rm×d satisfies (cε, 2k)-RIP for k = log(4/δ). For vector a ∈ Rd let Da denote
the d× d diagonal matrix with Di,i = ai. Let σ ∈ {−1, 1}d be chosen uniformly at random. Then

∀‖z‖2 = 1, P
σ
(|‖ΠDσz‖22 − 1| > ε) < δ.

Proof. Relabel coordinates so that |z1| ≥ |z2| ≥ · · · ≥ |zd|. Define Si = {(k − 1) · i + 1, (k − 1) ·
i + 2, . . . , (k − 1) · i + k} and define z(i) := zSi ∈ Rd. That is, we partition the entries of z into
size-k blocks, so z(1) contains the largest k entries in magnitude, z(2) contains the next largest k,

etc., with all other entries zeroed out. Also define M(i) := MSi for a matrix i (using the definition

of MSi from Lemma 5.3.6). Then observing Dσz = Dzσ, we have

‖ΠDσz‖22 = ‖ΠDzσ‖22
= σ>DzΠ

>ΠDzσ

= σ>Xσ

for X := DzΠ
>ΠDz, which is a d × d matrix. Note Dz =

∑
iDz(i) and Π =

∑
i Π(i), so that

DzΠ
>ΠDz =

∑
i,j Dz(i)Π

>
(i)Π(j)Dz(j). We decompose X = A+B +B> + C where

A :=
∑
i

Dz(i)Π
>
(i)Π(i)Dz(i)

B :=
∑
j

Dz(1)Π
>
(1)Π(j)Dz(j)

C :=
∑
i,j>1
i 6=j

Dz(i)Π
>
(i)Π(j)Dz(j)

Graphically we have the following picture, where each matrix is filled with zeroes in the white
regions, and the portions with black ground have entries identical to that of X:



72 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

A = B = B> = C =

We will show that for each one of the following events, it fails to hold with probability at most
δ/4; the theorem then follows by a union bound:

E1: σ>Aσ = 1± ε
4

E2: σ>Bσ = ± ε
4

E3: σ>B>σ = ± ε
4

E4: σ>Cσ = ± ε
4

Analyzing E1:

σ>Aσ =
∑
i

σ>(i)Dz(i)Π
>
(i)Π(i)Dz(i)σ(i)

=
∑
i

z>(i)Dσ(i)Π
>
(i)Π(i)Dσ(i)z(i)

=
∑
i

‖Π(i)Dσ(i)z(i)‖22

= (1± ε

4
)
∑
i

‖Dσ(i)z(i)‖22 (Dσ(i)z(i) is k-sparse)

= (1± ε

4
)
∑
i

‖z(i)‖22

= (1± ε

4
)‖z‖22

= 1± ε

4
.

Thus E1 holds with probability 1 (given that Π is RIP).

Analyzing E2: Let x(−1) denote x − x(1) (so only the first block is zeroed out). Define Π(−1)

similarly. Then σ>Bσ = σ>(1)Dz(1)Π
>
(1)Π

>
(−1)Dz(−1)σ(−1). Define v := (σ>(1)Dz(1)Π

>
(1)Π

>
(−1)Dz(−1))

>.

We first bound ‖v‖2. Note

‖v‖2 = sup
‖y‖2=1

v>y

= σ>(1)Dz(1)Π
>
(1)Π

>
(−1)Dz(−1)y

=
∑
j>1

σ(1)Dz(1)Π
>
(1)Π(j)Dz(j)y(j)

=
∑
j>1

z(1)Dσ(1)Π
>
(1)Π(j)Dz(j)y(j)



5.3. SPEEDING UP JOHNSON-LINDENSTRAUSS TRANSFORMS 73

≤
∑
j>1

‖z(1)‖2 · ‖Dσ(1)‖ · ‖Π>(1)Π(j)‖‖Dz(j)‖‖y(j)‖2

We have ‖z(1)‖2 ≤ ‖z‖2 = 1 and ‖Dσ‖ = ‖σ‖∞ = 1. Also by 2k-RIPness of Π and part (b) of

Lemma 5.3.6, ‖Π>(1)Π(j)‖ ≤ cε since j 6=. Also ‖Dz(j)‖ = ‖z(j)‖∞. Thus

v>y ≤ cε
∑
j>1

‖z(j)‖∞‖y(j)‖2

≤ cε
∑
j>1

(‖z(j−1)‖1
k

)
‖y(j)‖2 (5.10)

≤ cε
∑
j>1

(‖z(j−1)‖2√
k

)
‖y(j)‖2 (Cauchy-Schwarz)

=
cε√
k

∑
j>1

‖z(j−1)‖2 · ‖y(j)‖2

≤ cε√
k

∑
j>1

‖z(j−1)‖22

1/2∑
j>1

‖y(j)‖22

1/2

(Cauchy-Schwarz)

≤ cε√
k
‖z‖2 · ‖y‖2

=
cε√
k

The step Eq. (5.10) is known as “shelling”, i.e. dividing a vector into blocks after sorting entries
by magnitude, then comparing some norm in the jth block with a norm in the (j − 1)st block.

P(|σ>Bσ| > ε/4) = P
σ(−1)

(|v>σ| > ε/4)

≤ 2e−C
′ε2/‖v‖22 (Khintchine)

< 2−k

for c sufficiently small, which is at most δ/4.

Analyzing E3: σ>B>σ = σ>Bσ, so the analysis of this event is identical to that of E1.

Analyzing E4: We wish to bound Pσ(|σ>Cσ| > ε
4); we will use the Hanson-Wright inequality

(Corollary 1.1.16). For this we need to bound both ‖C‖ and ‖C‖F .

‖C‖2F =
∑
i 6=j
i,j>1

‖Dz(i)Π
>
(i)Π(j)Dz(j)‖2F

≤
∑
i 6=j

(
‖Dz(i)‖ · ‖Π>(i)Π(j)‖ · ‖Dz(j)‖F

)2
(‖AB‖F ≤ ‖A‖ · ‖B‖F )

≤ c2ε2
∑
i 6=j
‖z(i)‖2∞ · ‖z(j)‖22 (Lemma 5.3.6)



74 CHAPTER 5. JOHNSON-LINDENSTRAUSS TRANSFORMS

≤ c2ε2

k

∑
i 6=j
‖z(i−1)‖22 · ‖z(j)‖22 (shelling)

≤ c2ε2

k

(∑
i

‖z(i)‖22

)2

(monomials a superset of the terms in previous line)

=
c2ε2

k

To see that ‖AB‖F ≤ ‖A‖‖B‖F , note that if the ith column of B is bi then ‖AB‖2F =
∑

i ‖Abi‖22 ≤
‖A‖ ·

∑
i ‖bi‖22 = ‖A‖2‖B‖2F .

‖C‖ = sup
‖y‖2=1

|y>Cy|

=

∣∣∣∣∣∣∣∣
∑
i 6=j
i,j>1

y(i)Dz(i)Π
>
(i)Π(j)Dz(j)y(j)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑
i 6=j
i,j>1

‖y(i)‖2 · ‖Dz(i)‖ · ‖Π>(i)Π(j)‖ · ‖Dz(j)‖ · ‖y(j)‖2

∣∣∣∣∣∣∣∣
≤ cε

k

∑
i 6=j
i,j>1

‖y(i)‖2 · ‖z(i−1)‖2 · ‖z(j−1)‖2 · ‖y(j)‖2 (shelling twice and Lemma 5.3.6)

≤ cε

k

(∑
i>1

‖y(i)‖2 · ‖z(i−1)‖2

)2

≤ cε

k

(∑
i>1

‖y(i)‖22

)
·

(∑
i>1

‖z(i−1)‖22

)
(Cauchy-Schwarz)

≤ cε

k
‖y‖22 · ‖z‖22

=
cε

k
.

We thus have by Cauchy-Schwarz that

P(|σ>Cσ| > ε

4
) . e−C

ε2

16
· k
c2ε2 + e−C

ε
4
· k
cε ,

which is at most δ/4 for c sufficiently small.



Chapter 6

Linear algebra applications

In this chapter we focus on applications of sketching to linear algebra problems such as approxi-
mate matrix multiplication, regression, low-rank approximation, and k-means clustering (which is
actually a special case of constrained low-rank approximation). A more in-depth treatment of the
use of sketching in linear algebra applications can be found in the book [Woo14].

6.1 Approximate matrix multiplication

Suppose we have two matrices A ∈ Rn×p, B ∈ Rn×d with n large. We could naively compute
A>B using for loops, which would take O(ndp) flops. Asymptotically faster matrix multiplication
algorithms do exist (the current records are in [AW20, GU18]), but are of only theoretical interest
as they are slow in practice. We denote the rows of A,B as ai, bi, respectively:

A =



a>1
a>2

...
...

...
...

...
...

...
...

...
...

...
...

a>n


, B =



b>1
b>2

...
...

...
...

...
...

...
...

...
...

...
...

b>n


There are two main approaches to using sketching to speed up the computation of some matrix C

that approximates A>B: a sampling approach [DKM06], and an oblivious linear sketching approach
[Sar06] (where “oblivious” refers to the fact that the sketching matrix Π is chosen without knowledge
of the inputs A,B). Specifically, for some norm ‖ · ‖X , we would like that ‖A>B − C‖X is small
with good probability over the randomness used by the algortihm. We focus here on ‖ · ‖X = ‖ · ‖F
being the Frobenius norm.

6.1.1 Sampling approach

Here we describe the approach of [DKM06] for approximate matrix multiplication based on row-
sampling. The main starting point of the approach is the identity

A>B =
n∑
i=1

aib
>
i .

75



76 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

That is, the matrix we want A>B can be represented as the sum of n rank-1 matrices. Computing
one such rank-1 matrix and adding it into a running sum takes O(dp) time, so computing all
n of them takes O(ndp) time. The idea is then to approximate A>B by only sampling m of
these matrices, thus improving the runtime to only O(mdp). That is, we pick some probability
distribution ~p = (p1, . . . , pn) on the rows then pick m i.i.d. rows i1, . . . , im from distribution ~p. We
then approximate A>B as

C :=
1

m

m∑
r=1

airb
>
ir

pir
.

We note that C can also be seen as (ΠA)>(ΠB) for a linear sketching matrix Π ∈ Rm×n which
is not oblivious, i.e. the distribution from which we draw Π depends on A,B. Specifically, Π is a
sampling matrix where the rth row has a 1/

√
m in the irth position and zeroes elsewhere.

One can show that EC = A>B regardless of how the pi are chosen (as long as none of them
is zero). The question then is how to pick ~p so that not only is C an unbiased estimator of A>B,
but also C is close to A>B with good probability. Specifically, by applying Markov after squaring
both sides of the inequality,

P
Π

(‖(ΠA)>(ΠB)−A>B‖F > ε‖A‖F ‖B‖F ) <
E ‖(ΠA)>(ΠB)−A>B‖2F

ε2‖A‖2F ‖B‖2F
. (6.1)

Lemma 6.1.1. Set pi = ‖ai‖2·‖bi‖2∑n
j=1 ‖aj‖2·‖bj‖2

and m ≥ 1/(ε2η). Then for ε, η ∈ (0, 1/2),

P
Π

(‖(ΠA)>(ΠB)−A>B‖F > ε‖A‖F ‖B‖F ) < η.

Proof. By Eq. (6.1), it suffices to show E ‖(ΠA)>(ΠB) − A>B‖2F ≤ ‖A‖2F ‖B‖2F /m. Define Zr =

1
m

air b
>
ir

pir
so that (ΠA)>(ΠB) =

∑m
r=1 Zr. Then

E ‖(ΠA)>(ΠB)−A>B‖2F =
∑
i,j

E

(
m∑
r=1

(Zr − EZr)i,j

)2

=
∑
i,j

V ar

[
m∑
r=1

(Zr)i,k

]

=
∑
i,j

m∑
r=1

V ar[(Zr)i,j ] (independence of the Zr)

Now, the Zr are distributed as a random variable Z where

Zi,j =
1

m

n∑
k=1

ρk
(ak)i(bk)i

pk

where ρk is an indicator random variable for the event that row k was sampled. Thus

V ar[Zi,j ] ≤ EZ2
i,j

=
1

m2

n∑
k=1

pk
(ak)

2
i (bk)

2
j

p2
k

=
1

m2

n∑
k=1

(ak)
2
i (bk)

2
j

‖ak‖2‖bk‖2
·

(
n∑
t=1

‖at‖2‖bt‖2

)
.



6.1. APPROXIMATE MATRIX MULTIPLICATION 77

Plugging back into Eq. (independence of the Zr),

E ‖(ΠA)>(ΠB)−A>B‖2F ≤
1

m

(
n∑
t=1

‖at‖2‖bt‖2

)
·
∑
k

∑
i,j

(ak)
2
i (bk)

2
j

‖ak‖2‖bk‖2


=

1

m

(
n∑
t=1

‖at‖2‖bt‖2

)
·

(∑
k

‖ak‖2‖bk‖2

)

=
1

m

(
n∑
t=1

‖at‖2‖bt‖2

)2

≤ 1

m

(
n∑
t=1

‖at‖22

)(
n∑
t=1

‖bt‖22

)
(Cauchy-Schwarz)

=
‖A‖2F ‖B‖2F

m

as desired.

One downside of Lemma 6.1.1 is that the dependence on the failure probability is 1/η. For
failure probability δ � 1, we would prefer to have O(log(1/δ)) dependence. Our usual method for
accomplishing would be to instantiate the above scheme for η = 1/4, then run the above scheme
R = Θ(log(1/δ)) times to get approximations C1, . . . , Cr, then return the “median” of the Cr as
our output. The issue here is that unlike previous problems where the output was a number, here
the outputs are matrices so it is not clear what the “median” of a set of matrix even means. One
way around this issue is the following, suggested by [CW09].

Let C∗ = A>B be the true value of the matrix product. The Chernoff bound tells us that with
probability at least 1 − exp(−Ω(R)), strictly more than 2R/3 of the Cr satisfy ‖Cr − C∗‖F ≤ γ,
where γ = ε‖A‖F ‖B‖F is our desired error bound. Let S ⊂ [R] be this “good” subset of the
indices r. Then |S| > 2R/3. We also know that if r, r′ ∈ R, then by the triangle inequality
‖Cr−Cr′‖F ≤ ‖Cr−C∗‖F+‖Cr′−C∗‖F ≤ 2γ. Meanwhile if Cr′ is “far” from a good approximation,
i.e. ‖Cr′ − C∗‖F > 3γ, then by triangle inequality we have that for any r ∈ S, ‖Cr′ − Cr‖F ≥
‖Cr′ − C∗‖F − ‖Cr − C∗‖ > 2γ. This motivates then the scheme of [CW09]: loop over all r ∈ [R]
and return the first Cr for which |{r′ ∈ [R] : ‖Cr − Cr′‖ ≤ 2γ| ≥ 2R/3. By the given analysis, any
such r is guaranteed to have ‖Cr − C∗‖ ≤ 3γ, and such an r must exist since any r ∈ S would do.

The downside of the above scheme is that it requires Θ(R2) distance comparisons, whereas
computing the median in 1 dimension only required O(R) comparisons. One way around this is to
use a randomized Las Vegas scheme: instead of trying all r in some fixed order, pick a random r
and tes whether it satisfies |{r′ ∈ [R] : ‖Cr − Cr′‖ ≤ 2γ| ≥ 2R/3. Since there are at least 2R/3
values of r which do (namly any r ∈ S), the probability of a good R is at least 2/3, and thus the
expected number of r we have to test is thus only O(1). Therefore the expected number of distance
comparisons is only O(R). Alternatively, Narayanan showed a deterministic algorithm which is
always guaranteed to compute only a linear number of distances to accomplish this task [Nar18].

6.1.2 Oblivious linear sketching approach

An oblivious linear sketching approach is one where our linear sketch matrix Π does not depend on
A,B. In particular it will be chosen randomly from some distribution D which does not depend on
A,B. We will use such a distribution that satisfies what is known as the JL moment property.



78 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

Definition 6.1.2 ([KN14]). We say a distribution D over Rm×n satisfies the (ε, δ, p)-JL moment
property if for all unit vectors z ∈ Rn,

‖‖Πz‖22 − 1‖p ≤ εδ1/p.

The above definition is useful for obtaining DJL since, by Markov’s inequality after raising both
sides to the pth power,

P
Π∼D

(∣∣‖Πz‖22 − 1
∣∣ > ε

)
<
‖‖Πz‖22 − 1‖pp

εp
.

The above is at most δ if D satisfies the (ε, δ, p)-JL moment property.
Though we did not state it explicitly in previous chapters, several distributions D we have seen

satisfy the JL moment property. For example, Π could be a CountSketch with m = O(1/(ε2δ)),
which satisfies the property for p = 2. Alternatively a matrix of i.i.d. random signs, or Sparse
JL transform, with m = O(ε−2 log(1/δ)) (and s = O(ε−1 log(1/δ)) for SparseJL) satisfy the JL
moment property for p = Θ(log(1/δ)) (this follows by inspecting which moment is being used in
the Hanson-Wright inequality in those analyses). It can also be shown that the FastJL transform
of [AC09] satisfies the JL moment property (see [CNW16]).

We now show that any distribution with the JL moment property for p ≥ 2 provides an approx-
imate matrix multiplication guarantee. First we give a lemma, which is based on one in [KN14]
but with an argument that gives an improved constant factor as observed by Olivier Zahm.

Lemma 6.1.3. Suppose x, y ∈ Rn have ‖x‖2 = ‖y‖2 = 1 and suppose D satisfies the (ε, δ, p)-JL
moment property. Then for Π ∼ D,

‖〈Πx,Πy〉 − 〈x, y〉‖p ≤ εδ1/p.

Proof. Using the relation 〈x, y〉 = 1
4(‖x+ y‖22 − ‖x− y‖22),

‖〈Πx,Πy〉 − 〈x, y〉‖p =
1

4
‖(‖Π(x+ y)‖22 − ‖x+ y‖22)− (‖Π(x− y)‖22 − ‖x− y‖22)‖p

≤ 1

4

[
‖‖Π(x+ y)‖22 − ‖x+ y‖22‖p + ‖‖Π(x− y)‖22 − ‖x− y‖22‖p

]
(triangle inequality)

≤ ‖x+ y‖22
4

· ‖‖Π(
x+ y

‖x+ y‖2
)‖22 − ‖

x+ y

‖x+ y‖2
‖22‖p

+
‖x− y‖22

4
· ‖‖Π(

x− y
‖x− y‖2

)‖22 − ‖
x− y
‖x− y‖2

‖22‖p

≤ εδ1/p

4
· (‖x+ y‖22 + ‖x− y‖22) (JL moment property)

=
εδ1/p

4
· (2‖x‖22 + 2‖y‖22)

= εδ1/p.

Theorem 6.1.4. Suppose Π ∈ Rm×n is drawn from a distribution satisfying the (ε, δ, p)-JL moment
property for some p ≥ 2. Then

P
Π

(
‖(ΠA)>(ΠB)−A>B‖F > ε‖A‖F ‖B‖F

)
< δ.



6.2. SUBSPACE EMBEDDINGS 79

Proof. We will use Markov’s inequality, which gives

P
Π

(
‖(ΠA)>(ΠB)−A>B‖F > ε‖A‖F ‖B‖F

)
<
‖‖(ΠA)>(ΠB)−A>B‖F ‖pp

εp‖A‖pF ‖B‖
p
F

Let ai denote the ith column of A, and similarly bi is the ith column of B. Define ãi = ai/‖ai‖2,
and similarly for b̃i. Write M := (ΠA)>(ΠB)−A>B. Then

Mi,j = (〈Πãi,Πb̃j〉 − 〈ãi, b̃j〉)‖ai‖2‖bj‖2.

It thus suffices to show ‖‖M‖F ‖p ≤ ε‖A‖F ‖B‖F δ1/p. We have

‖‖M‖F ‖p = ‖‖M‖2F ‖
1/2
p/2

= ‖
∑
i,j

(〈Πãi,Πb̃j〉 − 〈ãi, b̃j〉︸ ︷︷ ︸
Xi,j

)2‖ai‖22‖bj‖22‖
1/2
p/2

≤

∑
i,j

‖ai‖22 · ‖bj‖22 · ‖X2
i,j‖p/2

1/2

(triangle inequality, since p/2 ≥ 1)

≤
∑
i,j

‖ai‖2 · ‖bj‖2 · ‖X2
i,j‖

1/2
p/2 (

√
A+B ≤

√
A+
√
B)

≤
∑
i,j

‖ai‖2 · ‖bj‖2 · ‖Xi,j‖p

≤ εδ1/p

∑
i,j

‖ai‖2 · ‖bj‖2

 (Lemma 6.1.3)

≤ εδ1/p

(∑
i

‖ai‖22

)1/2

·

(∑
i

‖bi‖22

)1/2

(Cauchy-Schwarz)

= εδ1/p‖A‖F ‖B‖F .

As mentioned above, Theorem 6.1.4 implies we can get approximate matrix multiplication guar-
antees using the CountSketch matrix, SparseJL matrices, dense Rademacher-entried JL matrices,
or FastJL transforms.

6.2 Subspace embeddings

The notion of a subspace embedding was introduced by Sarlós [Sar06] and is related (but not identical
to) approximate matrix multiplication with respect to the `2 → `2 operator norm ‖ · ‖. Specifically,
suppose we wanted an AMM guarantee with respect to this norm for multiplying A>A. Then we
would want

‖(ΠA)>(ΠA)−A>A‖ < ε‖A‖2 = ε‖A>A‖. (6.2)

Using that for real symmetric matrices M we have ‖M‖ = sup‖x‖2=1 |x>Mx|, Thus the guarantee
Eq. (6.2) would be equivalent to

∀‖x‖2 = 1,
∣∣‖ΠAx‖22 − ‖Ax‖22∣∣ ≤ sup

‖z‖2=1
ε‖Az‖22.



80 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

A subspace embedding (for the column space of A) is instead Π satisfying the stronger guarantee

∀‖x‖2 = 1,
∣∣‖ΠAx‖22 − ‖Ax‖22∣∣ ≤ ε‖Ax‖22.

Definition 6.2.1. Let E ⊂ Rn be a linear subspace. Then Π ∈ Rm×n is an ε-subspace embedding
for E if

∀x ∈ E, (1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22.
Let U ∈ Rn×d be a matrix with orthonormal columns that form a basis for E, so that E =

{Uz : z ∈ Rd}. Then being a subspace embedding is equivalent to the condition

∀‖z‖2 = 1, |‖ΠUz‖22 − ‖Uz‖22| ≤ ε‖Uz‖22.

Note ‖Uz‖22 = z>U>Uz = ‖z‖22, and thus the above is equivalent to

sup
‖z‖2=1

|‖ΠUz‖22 − 1| ≤ ε,

i.e. ‖(ΠU)>(ΠU)−I‖ ≤ ε. We will often make use of this alternate, equivalent definition of subspace
embeddings. Note this definition is a natural generalization of the condition in the DJL guarantee,
where | · | is replaced by ‖ · ‖, and the unit vector u in DJL (i.e. a vector u ∈ Rn×1 with u>u = 1)
is being replaced by a matrix U satisfying a similar, higher-dimensional version U>U = I.

It is known that subspace embeddings can be used to design algorithms for approximate compu-
tational problems in linear algebra, such as approximating leverage scores, least squares regression,
low-rank approximation, k-means clustering, and several others. We will go into a subset of these in
future sections. For the remainder of this section, we discuss how one obtains subspace embeddings.

6.2.1 Given an orthonormal basis

If we know (or compute) an orthonormal basis U ∈ Rn×d for the subspace E of interest (i.e.
U>U = I), then we have that Π = U> ∈ Rd×d is an ε-subspace embedding for A with ε = 0. This
is because any x ∈ E can be written as Uz so that

‖x‖22 = ‖Uz‖22 = ‖z‖22
But then ‖U>x‖22 = ‖U>Uz‖22 = ‖z‖22 as well. Furthermore note that a subspace embedding can
never have fewer than d rows, since otherwise some non-zero vector in E will be in the kernel of Π
and thus not have its norm preserved at all.

6.2.2 Leverage score sampling

A sampling approach for obtaining a subspace embedding was first proposed in [DMM06] then
further developed and analyzed in [SS11]. The idea is to again use the fact that matrix-matrix
product can be represented as the sum of rank-1 outerproducts then sample, as in Subsection 6.1.1:

A>A =
n∑
i=1

aia
>
i .

Suppose we keep each row i independently with probability pi. That is, we set A =
∑n

i=1 ηi
eia
>
i√
p
i

where ηi be an indicator random variable for the event that we do not zero out the ith row (so the
ith row of ΠA is a>i /

√
p
i

with probability pi, and is 0 otherwise). Then

(ΠA)>(ΠA) =

n∑
i=1

ηi ·
aia
>
i

pi
.



6.2. SUBSPACE EMBEDDINGS 81

In the case of AMM with respect to Frobenius norm, we set the pi proportional to ‖ai‖2 · ‖bi‖2,
but what should they be set to in order to guarantee the subspace embedding property with good
probability? Specifically, we would like

P
Π

(
‖(ΠU)>(ΠU)− I‖ > ε

)
< δ

while keeping
∑n

i=1 pi small (since that is the expected target dimension).
To guide us in selecting the pi, we make the following definition:

Definition 6.2.2. Given a matrix A ∈ Rn×d with rows a>i , we define the ith sensitivity Ri by

Ri := sup
‖x‖2=1

〈ai, x〉2

‖Ax‖22
.

Note the denominator equals
∑

j〈aj , x〉2, and thus 0 ≤ Ri ≤ 1 always.

Now, let us build some intuition: it would be strange to set any pi = 0 (since then we are
always ignoring some part of the input matrix A). Then if pi > 0, for the x achieving the sup
in the definition of sensitivty, any time we do sample row i we would be guaranteed to have
‖ΠAx‖22 ≥ (1/pi) · 〈ai, x〉2 = (Ri/pi)‖Ax‖22. Thus if we want to preserve ‖Ax‖22 multiplicatively, we
must certainly have pi ≥ Ri/2 (else we alter the squared norm by a factor of more than 2). We
now give an alternative definition. First, we introduce some more linear algebra background:

Definition 6.2.3. For a matrix A ∈ Rn×d of rank r ≤ d, the singular value decomposition (SVD)
of A is

A = UΣV >

where U, V each have r orthonormal columns, and Σ is a diagonal matrix with σi := Σi,i with
σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

It is a theorem in linear algebra, which we will not prove here, that every real matrix has a (not
necessarily unique) SVD (though Σ is unique). We then have that the orthogonal projection onto
the column space of X is UU>. We also have the following definition.

Definition 6.2.4. For a matrix with SVD decomposition A = UΣV >, the Moore-Penrose pseu-
doinverse is defined to be A+ := V Σ−1U>. Then AA+ = UU> is the orthogonal projection onto
the column space of A, and A+A = V V > is the orthogonal projection onto the rowspace of A.

Definition 6.2.5. Given a matrix A ∈ Rn×d with rows a>i , we define the ith leverage score `i by

`i := a>i (A>A)+ai = e>i A(A>A)+A>ei.

Since UU> is the orthogonal projection onto the column space of A, equivalently the ith leverage
score is the squared norm of the ith row of U .

We now show that the definitions “sensitivity” and “leverage score” are in fact equivalent.

Lemma 6.2.6. Let Ri be the sensiivity of the ith row and `i be its leverage score. Then Ri = `i.

Proof. Note that if M is invertible, AM and A have the same sensitivities (since the new maximizer
is simply M−1x) and leverage scores (since the column spaces of AM and A are identical). Choose
M to be a matrix such that AM has orthonormal columns, i.e. M = V Σ−1 (taken from the SVD).
Thus AM = U , with rows u1, . . . , un. Then `i = ‖ui‖22, whereas

Ri = sup
‖x‖2=1

〈ui, x〉2

‖Ux‖22



82 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

reference sketch name # rows m mult. time

folklore gaussian matrix ε−2(d+ log(1/δ)) mnd

[CW17, NN13a, MM13] CountSketch ε−2δ−1d2 nnz(A) +md

[NN13a, BDN15, Coh16] OSNAP ε−2d log(d/δ) ε−1 nnz(A) log(d/δ) +md

[Sar06, Tro11, CNW16] SRHT ε−2 log(d/δ)(d+ log(1/(εδ))) nd log n

[SS11] leverage score sampling ε−2d log(d/δ) md

[BSS12, LS17, LS18] row subset selection d/ε2 md

Figure 6.1: The last column is the time it take to compute ΠA given A ∈ Rn×d, where we want
Π ∈ Rm×n to be an ε-subspace embedding for the column space of A. The first four rows are
OSE’s succeeding with probability 1− δ (“SRHT” stands for “Subsampled Randomized Hadamard
Transform”), where Π = 1√

m
SHD as in Eq. (5.9). The last two are not oblivious, but rather select a

subset of m rows (possibly rescaled) of A. Leverage score sampling is discussed in Subsection 6.2.2.
Row subset selection (also called BSS or column subset selection) is an algorithm that selects the
m rows given A; the more interesting point for these constructions is not the time to multiply ΠA
(last column), but rather the time it takes to select the rows.

= sup
‖x‖2=1

〈ui, x〉2. (‖Ux‖22 = ‖x‖22 = 1)

The supremum is achieved for x = ui/‖ui‖2, which gives Ri = ‖ui‖22 = `i.

Thus we should pick, as a lower bound, at least pi ≥ `i/2. Note than
∑

i pi = Ω(
∑

i `i). We
have

∑
i `i = ‖U‖2F , which is exactly the rank of A (since the squared Frobenius norm is the sum of

the squared column norms of U , which are each exactly 1). A theorem of Spielman and Srivastava,
based on the Matrix Chernoff bound (one can also use the non-commutative Khintchine inequality)
shows that in fact one can actually take pi ≈ `i and obtain good results. We do not show the proof
here.

Theorem 6.2.7 ([SS11]). Suppose A ∈ Rn×d has rank at most r. For some universal constant
C > 0 and any ε, δ ∈ (0, 1/2), choose pi := min{1, Cε−2`i log(r/δ). Then for Π as described above,

P
Π

(‖(ΠU)>(ΠU)− I‖ > ε) < δ.

6.2.3 Oblivious subspace embeddings

The downside of leverage score sampling is that given some arbitrary matrix A, it is not clear what
its leverage scores are. They can be computed via the SVD, but that is slow. Alternative fast
approximation algorithms for the leverage scores do exist though [DMMW12].

Alternatively, one could use a distribution D over Π which does not depend on the input matrix
A. Such a distribution is called an oblivious subspace embedding, introduced by Sarlós [Sar06].

Definition 6.2.8. An (ε, d, δ)-oblivious subspace embedding (OSE), is a distribution D over Rm×n
such that for any matrix U ∈ Rn×d with orthonormal columns (i.e. for any linear subspace, which
is the column space of U),

P
Π∼D

(‖(ΠU)>(ΠU)− I‖ > ε) < δ.

There are generally three ways to show that D a distribution over Rm×n is an OSE.



6.2. SUBSPACE EMBEDDINGS 83

Net argument. For a subspace E of dimension d, let E′ be a γ-net of unit Euclidean ball in the
subspace for γ a sufficiently small constant (like 1/4). Thus |E′| ≤ O(1/γ)d by Lemma 5.2.4. Then
as long as Π preserves the norms of all x′ ∈ E′ up to 1±ε, it is possible to show that Π then preserves
all vectors in E up to 1±O(ε) (see [CW17]). Thus we can e.g. have M = O(log |E′|/ε2) = O(d/ε2)
by the JL lemma, where the entries in Π have i.i.d. ±1/

√
m entries. It is known that such m is

optimal for OSE’s [NN14].

Moment method. By Markov’s inequality, for any p we have

P
Π

(‖(ΠU)>(ΠU)− I‖ > ε) <
E ‖(ΠU)>(ΠU)− I‖p

εp

Write M := (ΠU)>(ΠU)−I. Then M is a real symmetric matrix and thus by the spectral theorem
has all real eigenvalues |λ1| ≥ |λ2| ≥ · · · |λd|. Thus ‖M‖ = |λ1|p, which equals λp1 if p is an even
integer. Meanwhile, tr(Mp) =

∑
i λ

p
i . Thus for p an even integer, ‖M‖p ≤ tr(Mp), and thus

P
Π

(‖(ΠU)>(ΠU)− I‖ > ε) <
E tr(((ΠU)>(ΠU)− I)p)

εp
.

Next, it can be shown by induction on p that for any square matrix M and integer p > 0,

(Mp)i,j =
∑

i1=i,i2,...,ip+1=j

p∏
t=1

Mit,it+1 .

Therefore

tr(Mp) =
∑

i1,...,ip+1

i1=ip+1

p∏
t=1

Mit,it+1 ,

whose expectation we can then compute using linearity of expectation (see for example [NN13a]).
Alternatively, for some OSE’s it is possible to provide simpler proofs using matrix exponential
based arguments, similar to the MGF-based approach to prove the Chernoff bound (see for example
[Coh16]).

Approximate matrix multiplication. Since ‖M‖F ≤ ‖M‖ (the LHS is the `2 norm of the
singular values, and the RHS is their `∞ norm), we have

‖(ΠU)>(ΠU)− I‖ ≤ ‖(ΠU)>(ΠU)− I‖F ,

thus as long as the RHS is at most ε, Π is an ε-subspace embedding. The approximate matrix
multiplication guarantee of Subsection 6.1.2 bounds the above by ε‖U‖2F = εd. We can thus apply
AMM with error parameter ε′ = ε/d to obtain a subspace embedding. This for example shows that
the CountSketch yields an OSE with m = O(d2/(ε2δ)) (see also [CW17, NN13a, MM13]). Note this
result is simply syntactic sugar for the moment method of the previous section, since ultimately
the AMM property for the CountSketch follows from bounding E ‖M‖2F for M = (ΠU)>(ΠU)− I.
This is the same as E tr(M2) since ‖M‖2F is generally equal to tr(M>M) for any real matrix M ,
which equals tr(M2) if M is symmetric. Having such sparse M is advantageous since then for any
input matrix A, we can compute ΠA in time proportional to m plus the number of nonzero entries
in A.



84 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

6.3 Least squares regression

In least squares regression we are given as input X ∈ Rn×d, y ∈ Rn and would like to compute

βLS = argmin
β

‖Xβ − y‖2.

Note y can be decomposed into y⊥+y‖, where y‖ is in the column space of X, and y⊥ is orthogonal
to it. Then

‖Xβ − y‖22 = ‖Xβ − y⊥ − y‖‖22 = ‖Xβ − y‖‖22 − 2 〈Xβ − y⊥, y‖〉︸ ︷︷ ︸
0

+‖y‖‖22.

Since {Xβ : β ∈ Rd} is simply the column space of X, it means there is a choice of β so that
Xβ = y‖, which makes ‖Xβ − y‖‖22 = 0; this is the optimal choice, βLS . We thus have that βLS is
such that XβLS is the orthogonal projection of y onto the columns space of X, i.e. XβLS = UU>y
(where U is from the SVD).

Using the pseudoinverse (see Definition 6.2.4)

βLS = (X>X)+X>y.

since X(X>X)+X> is the orthogonal projection onto the columnn space of X (which can be verified
by looking at the SVD).

Computationally, the above most expensive part of computing βLS is computing X>X, which
with nested for loops takes Θ(nd2) flops (the pseudoinverse can be computed via the SVD, which
itself can be found in O(d3) flops). We next show ways of speeding this computation up using
sketching.

6.3.1 Sketch-and-solve via subspace embeddings

The sketch-and-solve paradigm is a simple one introduced by Sarlós [Sar06]. The idea is to pick a
sketch matrix Π ∈ Rm×n (m� n) and solve for β̃LS = argmin ‖ΠXβ −Πy‖22 instead.

Lemma 6.3.1. Define E := span(cols(X), y). Suppose Π is an ε-subspace embedding for E. Then

‖Xβ̃LS − y‖22 ≤
1 + ε

1− ε
· ‖XβLS − y‖22.

Proof.

(1− ε)‖Xβ̃LS − y‖22 ≤ ‖ΠXβ̃LS −Πy‖22 (subspace embedding property)

≤ ‖ΠXβLS −Πy‖22 (β̃LS is the minimizer for the sketched problem)

≤ (1 + ε)‖XβLS − y‖22 (subspace embedding property)

The lemma then follows by rearranging terms.

Combining with Subsection 6.2.3 for example implies the following theorem of [CW17].

Theorem 6.3.2. Given X ∈ Rn×d, y ∈ Rn, in time O(nnz(X) + n) + poly(d/ε), with probability
at least 9/10 one can compute β̃LS satisfying

‖Xβ̃LS − y‖22 ≤
1 + ε

1− ε
· ‖XβLS − y‖22.

Here nnz(A) denotes the number of nonzero entries in A.



6.3. LEAST SQUARES REGRESSION 85

Proof. Let Π be a CountSketch matrix with m = O(d2/ε2) rows. Then it is a subspace embedding
for span(cols(X), y) with probability at least 9/10 by the argument in Subsection 6.2.3. The error
guarantee then follows by Lemma 6.3.1. The runtime follows since Π· can be computed in time
O(m+ nnz(X)) time, at which point (ΠX)>(ΠX) can be computed in time O(md2) = poly(d/ε).
Then the pseudoinverse can be computed in time O(d3) via the SVD. Also, Πy can be computed
in time O(n). Thus overall β̃LS = ((ΠX)>(ΠX))+(ΠX)>(Πy) can be computed in the stated time
bound.

6.3.2 Sketch-and-solve via AMM and subspace embeddings

Subsection 6.3.1 showed how to use ε-subspace embeddings to get (1 + O(ε))-approximate least
squares regression. The downside is then that OSE’s would need to have a number of rows depending
on 1/ε2. In this section we show an alternate analysis of sketch-and-solve due to Sarlós which only
requires anO(1)-subspace embedding (independent of ε), though also requires a certain probabilistic
event to hold involving approximate matrix multiplication. In particular, note condition (2) of
Theorem 6.3.3 is an AMM guarantee since U>(XβLS − y) = 0 (βLS is such that XβLS − y is the
projection of y onto the space orthogonal to the column space of X).

Theorem 6.3.3. Given the least squares regression problem of minimizing ‖Xβ−y‖22 for X ∈ Rn×d,
write the SVD X = UΣV >. Suppsose Π satisfies the following two conditions:

(1) Π is an ε0-subspace embedding for the column space of X, for ε0 = 1− 1/
√

2, and

(2) ‖(ΠU)>Π(XβLS − y)‖2 ≤
√

ε
2d · ‖U‖F · ‖Xβ

LS − y‖2.

Then if β̃LS is the minimizer of ‖ΠXβ −Πy‖22,

‖Xβ̃LS − y‖22 ≤ (1 +O(ε))‖XβLS − y‖22.

Proof. First some notation: define w := y −XβLS , and α, γ to be vectors such that Uα = XβLS

and Uγ = X(β̃LS − βLS). Then

‖Xβ̃LS − y‖22 = ‖Xβ̃LS −XβLS +XβLS − y‖22
= ‖X(β̃LS − βLS)‖22 + ‖XβLS − y‖22 (XβLS − y is orthogonal to cols(X))

= ‖γ‖22 + OPT. (6.3)

We would thus like to show that ‖γ‖22 ≤ ε · OPT. Let ProjAB denote the matrix whose columns
are the columns of B projected onto the column space of A. Observe

ΠU(α+ γ) = ΠXβ̃LS

= ProjΠX(Πy)

= ProjΠU (Πy) (ΠX and ΠU have the same column space)

= ProjΠU (Π(Uα+ w))

= ΠUα+ ProjΠU (Πw). (6.4)

Therefore ΠUγ = ProjΠU (Πw) so that (ΠU)>(ΠU)γ = (ΠU)>Πw. Next, Π is an ε0-subspace
embedding for U , we have ‖(ΠU)>(ΠU)−I‖ ≤ ε0 so that the smallest singular value of (ΠU)>(ΠU)
is at least 1−ε0. Therefore, applying condition (2) in the theorem conditions and using ‖U‖F ≤

√
d,

‖γ‖22
2

= (1− ε0)2‖γ‖22 ≤ ‖(ΠU)>ΠUγ‖22 = ‖(ΠU)>Πw‖22 ≤
ε

2
· OPT. (6.5)

Thus ‖γ‖22 ≤ ε · OPT, as desired.



86 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

6.3.3 Accelerating iterative solvers via sketching

In gradient descent we have some function f : Rn → R for which would like to find an approximate
minimizer. The approach is to pick some initial value x(0) then, iteratively apply the update rule
x(t+1) ← x(t)−γ ·∇f(x(t)). If one makes assumptions about f , e.g. we have bounds on the singular
values of its Hessian, it is possible to prove a general theorem that shows that f(x(t)) converges
exponentially quickly to f(x). We will not cover that here, but rather focus specifically on the least
squares regression problem.

For least squares regression we define f(β) = ‖Xβ − y‖22. As f(β) = (Xβ − y)>(Xβ − y) =
β>X>Xβ − 2β>X>y + y>y, and thus ∇f(β) = 2X>Xβ − 2X>y. We will take γ = 1/2 and thus
have the gradient descent update rule

β(t+1) = β(t) +X>(y −Xβ(t)).

We now prove a lemma showing that f(β) converges exponentially quickly to f(βLS) (recall
βLS is the minimizer of f) if all singular values of X are close to 1. This will not be true in general,
but as we will soon see, we can make this true quickly using sketching.

Lemma 6.3.4. Suppose f(β) = ‖Xβ − y‖22 and that all singular values of X are in the interval
[1− 1/

√
2, 1 + 1/

√
2]. If we perform gradient descent with γ = 1/2, then for all t ≥ 0,

‖X(β(t) − βLS)‖2 ≤ 2−t · ‖X(β(0) − βLS)‖2. (6.6)

Proof. The claim holds trivially for t = 0. For t > 0, note

X(β(t) − βLS) = X(β(t−1) +X>(y −Xβ(t−1))− βLS) = (X −XX>X)(β(t−1) − βLS).

The final equality holds since XX>y = XX>XβLS since XβLS is the orthogonal projection of y
onto the column space of X. Therefore, writing the SVD X = UΣV >,

‖X(β(t) − βLS)‖2 = ‖(X −XX>X)(β(t−1) − βLS)‖2
= ‖U(Σ− Σ3)V >(β(t−1) − βLS)‖2
= ‖(I − Σ2)ΣV >(β(t−1) − βLS)‖2 (U has orthonormal columns)

≤ ‖I − Σ2‖ · ‖ΣV >(β(t−1) − βLS)‖2 (‖AB‖F ≤ ‖A‖‖B‖F )

= ‖I − Σ2‖ · ‖UΣV >(β(t−1) − βLS)‖2 (U has orthonormal columns)

≤ 1

2
· ‖X(β(t−1) − βLS)‖2 (all singular values are 1± 1√

2
)

The lemma thus follows by induction on t.

Now back to sketching: suppose we want to find some β̃ such that

‖Xβ̃ − y‖2 ≤ (1 + ε)‖XβLS − y‖2.

First we will compute β(0) satisfying the above with ε = 1/2. This can be done using sketch-and-
solve using an O(1)-subspace embedding. Then note

‖X(β(0) − βLS)‖2 ≤ ‖Xβ(0) − y‖2 + ‖Xβ(LS) − y‖2 (triangle inequality)

≤ 2.5OPT



6.4. APPROXIMATE LOW-RANK APPROXIMATION 87

so that the RHS of Eq. (6.6) is at most ε ·OPT for t = Θ(log(1/ε)). Thus by the triangle inequality,

‖Xβ(t) − y‖2 ≤ ‖XβLS − y‖2 + ‖X(β(t) − βLS)‖2 ≤ (1 + ε)OPT

for t = Θ(log(1/ε)). The only thing that remains is to ensure the condition of Lemma 6.3.4 is
satisfied: that all the singular values of X are sufficiently close to 1.

We pick an α-OSE Π ∈ Rm×n for the column space of X and compute ΠX, e.g. Π being the
SRHT or the CountSketch so that this computation can be done quickly (see Fig. 6.1). We then
compute the SVD ΠX = U ′Σ′V ′> in time O(dm2). Define R := V ′Σ′−1. Then note that for any
vector z,

‖z‖22 = ‖U ′z‖22 = ‖ΠXRz‖22 = (1± α)‖XRz‖22.

Thus all singular values of XR are in the interval [1/
√

1 + α, 1/
√

1− α], which is 1 ± 1/
√

2 for
α = Θ(1), thus satisfying the conditions of Lemma 6.3.4. Furthermore XR and X have the same
column space, and thus we can run gradient descent replacing X with XR (then if we find a near-
optimal solution β̃, that corresponds to input Rβ̃ for the original f). The runtime per iteration of
gradient descent is only O(nnz(X)) to apply X and X>, and O(d2) to apply R. Over O(log(1/ε))
iterations, this amounts to O((nnz(A) + d2) log(1/ε)) time to run gradient descent, in addition to
the time to compute ΠX and its SVD.

6.4 Approximate low-rank approximation

In the low-rank approximation problem, we are given as input a matrix A ∈ Rn×d and integer k > 0
and would like to compute

Ak = argmin
rank(B)≤k

‖A−B‖F .

One could ask the question for other norms as well, but in this section we focus exclusively on
Frobenius norm. Unlike in the case of regression where we make the assumption n � d, the
algorithm we discuss in this section is an improvement even if n = d; thus we make no assumption
on the relationship between n and d. The following is a standard result in linear algebra.

Theorem 6.4.1 (Eckart-Young theorem). Write A = UΣV > and let Uk denote the matrix U with
all but the first k columns zeroed out (and similarly for Σk, Vk). Then Ak = UkΣkV

>
k .

Using Eckart-Young we see that we can compute the best rank-k approximation to A in O(nd2)
time, by computing the SVD then truncating. In this section we show a faster approach due to
[Sar06], based on sketching. Below, we let ProjA,k(B) denote the best rank-k approximation to k
in the column space of A. We also let [B]k denote the best rank-k approximation to B.

Theorem 6.4.2. For A ∈ Rn×d with SVD A = UΣV > and k > 0 an integer, let Π satisfy the
following two conditions:

(1) Π is an ε0-subspace embedding for the column space of Vk for ε0 = 1− 1/
√

2, and

(2) ‖(ΠVk)>Π(A−Ak)‖F ≤
√

ε
2k · ‖Vk‖F · ‖A−Ak‖F .

Then if Ãk := ProjAΠ>,k(A),

‖A− Ãk‖2F ≤ (1 + ε)‖A−Ak‖2F .



88 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

Proof. Let P be the orthogonal projection onto the column space of ProjAΠ>(Ak) so that P =
(ProjAΠ>(Ak))(ProjAΠ>(Ak))

+. Since ProjAΠ>,k(A) is the best rank-k approximation to A in the

column space of AΠ> and PA is in this space,

‖A− ProjAΠ>,k(A)‖2F ≤ ‖A− PA‖2F ,

so we bound the RHS.

‖A− PA‖2F = ‖(I − P )(A−Ak) + (I − P )Ak‖2F
= ‖(I − P )(A−Ak)‖2F + ‖(I − P )Ak‖2F
≤ ‖I − P‖ · ‖A−Ak‖2F + ‖(I − P )Ak‖2F (‖AB‖F ≤ ‖A‖ · ‖B‖F )

= ‖A−Ak‖2F + ‖(I − P )Ak‖2F

It thus suffices to show ‖(I − P )Ak‖2F ≤ ε‖A − Ak‖2F . By definition of P , we have PAk =
(AΠ>)(AΠ>)+Ak is the best approximation of Ak in the column space of AΠ> under Frobenius
norm error. Thus, letting M (i) denote the ith column of a matrix M ,

‖Ak − PAk‖2F = ‖Ak − (AΠ)>(AΠ>)+Ak‖2F
≤ ‖Ak − (AΠ>)(AkΠ

>)+Ak‖2F
= ‖(AΠ>)(AkΠ

>)+Ak −Ak‖2F
= ‖A>k (ΠA>k )+(ΠA>)−A>k ‖2F

=

n∑
i=1

‖A>k (ΠA>k )+(ΠA>)(i) −A>(i)
k ‖22 (6.7)

The above is related to n regression problems. Specifically, consider the regression problems

X∗(i) = argmin ‖A>kX(i) −A>(i)‖22 = A
>(i)
k

and the sketch-and-solve optima

X̃∗(i) = argmin ‖ΠA>kX(i) −ΠA>(i)‖22
for i = 1, 2, . . . , n. Then X̃∗(i) = (ΠA>k )+(ΠA>)(i). Thus Eq. (6.7) can be rewritten as

n∑
i=1

‖A>k (X̃∗(i) −X∗(i))‖22 = ‖A>k (X̃∗ −X∗)‖2F ,

treating X∗ as a matrix with columns X∗(i) (and similarly for X̃∗). The completion of the proof
is then essentially identical to that of Theorem 6.3.3. Specifically, note A>k = VkΣkU

>
k . Thus

we can write X∗ = VkZ for some matrix Z (its columns are in the column space of Vk) and
A>k (X̃∗ −X∗) = VkΓ for some matrix Γ. Also define W := A> −A>X∗. These definitions parallel
those in the proof of Theorem 6.3.3; specifically W plays the role of w, Z of α, and Γ of γ. Then
just as in Eq. (6.3), we must show ‖Γ‖2F ≤ ε‖A>kX∗ − A>‖2F = ε‖A − Ak‖2F . The exact same line
of reasoning as Eq. (6.4) then implies (ΠVk)

>ΠVkΓ = (ΠVk)
>ΠW , and using that Π is a subspace

embedding for Vk, similarly as in Eq. (6.5) and using (2) together with the fact that ‖Vk‖F =
√
k,

‖Γ‖2F
2

= (1− ε0)2‖Γ‖2F ≤ ‖(ΠVk)>ΠVkΓ‖2F = ‖(ΠVk)>ΠW‖2F ≤
ε

2
· ‖A−Ak‖2F .



6.5. PROJECTION-COST PRESERVING SKETCHES 89

Now in terms of computation time, we would like to compute ProjAΠ>,k(A). For Π ∈ Rm×d,
we can compute AΠ> quickly if Π is either the SRHT or CountSketch (see Fig. 6.1); note for these
choices of matrices and the conditions in Theorem 6.4.2, we can take m = Õ(k/ε) (SRHT) or
O(k2 + k/ε) (CountSketch). Then AΠ> is an n × m matrix, and we can thus compute its SVD
U ′Σ′V ′> in time O(nm2). We then wish to compute [U ′U ′>A]k = U ′[U ′>A]k. We can compute
U ′>A in O(nmd) time (since U ′ has rank at most m and thus has at most m columns), then
computing its SVD takes time O(dm2). The overall runtime is faster than the full O(nd2) time to
compute the SVD, as we replace one factor of d with m, which is on the order of k or k2 (note if
d > n, we can apply the algorithm of this section to A>).

6.5 Projection-cost preserving sketches

Another method for sketching for low-rank approximation, introduced by Cohen, Elder, Musco,
Musco, and Persu [CEM+15], is that of using a projection-cost preserving (PCP) sketch.

Definition 6.5.1. Let Ok be the set of all orthogonal projections onto subspaces of dimension at
most k. Given a matrix A ∈ Rn×d, we say Π ∈ Rm×d is an (ε, k)-PCP for A if

∀P ∈ Ok, (1− ε)‖(I − P )A‖2F ≤ ‖(I − P )AΠ>‖2F ≤ (1 + ε)‖(I − P )A‖2F .

Using a PCP sketch allows for a “sketch-and-solve” type of approach for low-rank approxima-
tion, which is different from the algorithm described in Section 6.4. That is, suppose Rk ⊆ Ok and
one wishes to find

P ∗ = argmin
P∈Rk

‖(I − P )A‖2F .

One can then simply instead compute

P̃∗ = argmin
P∈Rk

‖(I − P )AΠ>‖2F ,

and an analysis similar to the proof of Lemma 6.3.1 implies

‖(I − P̃∗)A‖2F ≤
1 + ε

1− ε
‖(I − P ∗)A‖2F .

If Rk = Ok, this gives a sketch-and-solve solution to the same problem studied in Section 6.4
(approximate unconstrained low-rank approximation under the Frobenius norm). However, other
problems can also be captured via different Rk, showing that a sketch-and-solve approach works
for them as well. Consider for example the k-means clustering problem mentioned in Chapter 5.
In this problem we are given an integer parameter k > 0 as well as n points x1, . . . , xn ∈ Rd. We
must then find k cluster centers y1, . . . , yk ∈ Rd minimizing

n∑
i=1

min
1≤j≤k

‖xi − yj‖22.

As discussed in Eq. (5.2), the k-means objective can be rewritten as computing

P∗ = argmin
k-partitions P of [n]

k∑
j=1

∑
i∈Pj

‖xi − µj‖22



90 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

for µj := (1/|Pj |)
∑

i∈Pj xi, where P = (P1, . . . ,Pk). An observation of [BZMD15] is that if one
defines XP as the n× k matrix with

(XP)i,j =


1√
|Pj |

i ∈ Pj

0 otherwise
,

then the columns of are orthonormal, so that ZP := XPX
>
P is a rank-k orthogonal projection1.

Also, if one puts the xi as rows of a matrix A, then a computation shows that the ith row of ZPA
equals µj , where i ∈ Pj . Thus if we define Qk as the set of all ZP for P a k-partition, then the
k-means objective can be rewritten as computing

Z∗ = argmin
Z∈Qk

‖(I − Z)A‖2F ,

which can be solved to approximate optimality using sketch-and-solve with a PCP sketch. As we
will soon see, oblivious randomized PCP sketches exist with O(k/ε2) rows, meaning that k-means
can be approximately solved by oblivious projection down to O(k/ε2) dimensions, independent of
n (unlike the discussion surrounding Eq. (5.3), which showed that dimension O(ε−2 log n) suffices).
In fact it has been shown even more recently [MMR19], via an argument unrelated to this section,
that projecting to dimension O(log(k/ε)/ε2) in fact suffices to preserve the cost of any k-clustering
of a set of points, independent of n.

We now show the main theorem of this section. If we choose Π ∈ Rm×d obliviously to A from
some distribution D, we state next to each of the bulleted conditions in the theorem statement
what D should satisfy so all conditions are simultaneously satisfied with probability at least 1− δ.

Theorem 6.5.2 ([CEM+15]). Let A ∈ Rn×d be given, and suppose its SVD decomposition is
A = UΣV >. Let A−k denote A − Ak = A − UkΣkV

>
k . If Π ∈ Rm×d satisfies the following four

properties, then it is a (5ε, k)-PCP sketch for A:

• Π is an ε-subspace embedding for the rowspace of Ak. Implied by (ε, k, δ4)-OSE.

• |‖A−kΠ>‖2F − ‖A−k‖2F | ≤ ε‖A−k‖2F . (ε, δ4 , p)-JLMP for p ≥ 1; Lemma 6.5.3.

• ‖A−kA>−k −A−kΠ>ΠA>−k‖F ≤
ε√
k
· ‖A−k‖2F . ( ε√

k
, δ4 , p)-JLMP for p ≥ 2; Theorem 6.1.4.

• ‖(ΠVk)>(ΠA>−k)‖F ≤
ε√
k
· ‖Vk‖F · ‖A−k‖F . ( ε√

k
, δ4 , p)-JLMP for p ≥ 2; Theorem 6.1.4.

Proof. Our goal is to show that under the conditions of the theorem statement,

∀P ∈ Ok, (1− ε)‖(I − P )A‖2F ≤ ‖(I − P )AΠ>‖2F ≤ (1 + ε)‖(I − P )A‖2F .

Alternatively by writing Y = I − P , it is equivalent to say

∀Y ∈ On−k, (1− ε) tr(Y AA>Y ) ≤ tr(Y AΠ>ΠA>Y ) ≤ (1 + ε) tr(Y AA>Y ).

We expand A = Ak +A−k. Then

tr(Y AA>Y ) = tr(Y AkA
>
k Y ) + tr(Y A−kA

>
−kY ) + tr(Y A−kA

>
k Y )︸ ︷︷ ︸

0

+ tr(Y AkA
>
−kY )︸ ︷︷ ︸

0

1We eliminate empty Pj , so we may have a k′-partition for some k′ < k, and thus a rank-k′ projection.



6.5. PROJECTION-COST PRESERVING SKETCHES 91

and

tr(Y AΠ>ΠA>Y ) = tr(Y AkΠ
>ΠA>k Y ) + tr(Y A−kΠ

>ΠA>−kY )

+ tr(Y A−kΠ
>ΠA>k Y ) + tr(Y AkΠ

>ΠA>−kY ).

Thus if we define

• E1 := AkA
>
k −AkΠ>ΠA>k

• E2 := A−kA
>
−k −A−kΠ>ΠA>−k

• E3 := A−kΠ
>ΠA>k

• E4 := AkΠ
>ΠA>−k ,

we would like to show | tr(Y EiY )| ≤ ε · tr(Y CY ) for each i = 1, . . . , 4 for C = AA>. Note also
that ‖A−k‖2F ≤ tr(Y CY ), as A−k = (I − UkU>k )A where P ∗ is the minimizer of ‖(I − P )A‖2F over
all rank-k orthogonal projections.

E1 : Define yi to be the ith column of Y . Then

| tr(Y E1Y )| =

∣∣∣∣∣∑
i

‖A>k yi‖22 − ‖ΠA>k yi‖22

∣∣∣∣∣
≤ ε ·

∑
i

‖A>k yi‖22 (Π is an ε-subspace embedding for rowspace of Ak)

= ε · tr(Y CkY )

≤ ε · tr(Y CY ).

E2 :

| tr(Y E2Y )| = | tr(Y E2)|
= | tr(E2)− tr(PE2)|
≤ | tr(E2)|+ | tr(PE2)|

We have
| tr(E2)| = |‖A−kΠ>‖2F − ‖A−k‖2F | ≤ ε‖A−k‖2F ≤ ε tr(Y CY ).

Observe tr(PE2) is the sum of eigenvalues of a rank at most k matrix. Hence by Cauchy-Schwarz,

| tr(PE2)| ≤
√
k · ‖PE2‖F ≤

√
k · ‖E2‖F ≤ ε‖A−k‖2F ≤ ε tr(Y CY ).

E3 : Since E>3 is in the column space of A, CC+E>3 = E>3 . Thus

tr(Y E3Y ) = tr(Y E>3 Y )

= tr(Y E>3 ) (tr(AB) = tr(BA), and Y Y = Y since Y is a projection)

= tr(Y CC+E>3 )

= tr(Y C(C+)1/2(C+)1/2E>3 ) (6.8)

≤
√
tr(Y CC+CY ) ·

√
tr(E3C+E>3 ) (Cauchy-Schwarz)



92 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

=
√
tr(Y CY ) ·

√
tr(E3C+E>3 ) (6.9)

In Eq. (6.8) we used that C = UΣ2U>, so C+ = UΣ−2U> and thus (C+)1/2 = UΣ−1U>. Also,

E3 = UΣV >−kΠ
>ΠVkΣU

>.

Then

tr(E3C
+E>3 ) = tr(UΣV >−kΠ

>ΠVkΣU
>UΣ−2U>UΣV >k Π>ΠV−kΣU

>)

= tr(A−kΠ
>ΠVkV

>
k Π>ΠA>−k)

= ‖(ΠVk)>(ΠA>−k)‖2F

≤ ε2

k
· ‖Vk‖2F · ‖A−k‖2F

= ε2 · ‖A−k‖2F .

Thus

Eq. (6.9) ≤ ε ·
√
tr(Y CY ) · ‖A−k‖F ≤ ε · tr(Y CY )

E4 : E4 = E>3 , so | tr(Y E4Y )| = | tr(Y E3Y )| ≤ ε · tr(Y CY ).

The four conditions of Theorem 6.5.2 should look familiar. The first is a simple subspace
embedding requirement. The third and fourth conditions are AMM conditions under Frobenius
norm with error ε/

√
k, which happen with good probability if Π satisfies the (ε/

√
k, δ/4, p)-JL

moment property for some p ≥ 2 (see Theorem 6.1.4). The second bullet looks quite a bit like
what would be implied by the Distributional JL lemma, although applied not to a vector but to
the matrix A>−k (note ‖A−kΠ>‖2F = ‖ΠA>−k‖2F ). We show in Lemma 6.5.3 that the second bullet
holds with good probability when Π is drawn from a distribution with the (ε, δ/4, p)-JL moment
property for some p ≥ 1. Thus in summary: we would like Π to be drawn from a distribution
that is simultaneously an (ε, k)-OSE, and also has the (ε/

√
k, δ/4, p)-JL moment property for some

p ≥ 2. The CountSketch with m rows satisfies these conditions with m = O(d2/(ε2δ)), allowing
for fast multiplication, for example, or one could also use the OSNAP or SRHT distributions, or a
matrix Π with i.i.d. gaussian entries (see Fig. 6.1).

Lemma 6.5.3. Suppose Π ∈ Rm×n is drawn from a distribution satisfying the (ε, δ, p)-JL moment
property for some p ≥ 1. Then for any matrix M ∈ Rn×d,

P
Π

(|‖ΠM‖2F − ‖M‖2F | > ε‖M‖2F ) < δ.

Proof. Let mi denote the ith column of M . Then ‖ΠM‖2F =
∑

i ‖Πmi‖22. Thus

‖‖ΠM‖2F − ‖M‖2F ‖p = ‖
∑
i

(‖Πmi‖22 − ‖mi‖22)‖p

≤
∑
i

‖‖Πmi‖22 − ‖mi‖22‖p (triangle inequality)

≤
∑
i

‖mi‖22 · εδ1/p (JL moment property)

= εδ1/p · ‖M‖2F .



6.5. PROJECTION-COST PRESERVING SKETCHES 93

Thus by Markov’s inequality,

P
Π

(|‖ΠM‖2F − ‖M‖2F | > ε‖M‖2F ) <
‖‖ΠM‖2F − ‖M‖2F ‖

p
p

εp‖M‖2pF
≤ δ.

6.5.1 k-means clustering

As mentioned already, a recent result shows that in fact one can do sketch-and-solve for k means
when randomly projecting down to dimension O(log(k/ε)/ε2) [MMR19], e.g. via a random gaussian
matrix. Their result also extends to k-median, where one sums the distances to cluster centers and
not the squared distances. We will not cover their result here, but we will show a precursor
result that randomly projecting to O(ε−2 log k) dimensions implies that sketch-and-solve will find
a clustering that is approximately optimal up to a factor 9 + ε [CEM+15] (instead of 1 + ε as in
[MMR19]).

Recall in k-means we are given a matrix A ∈ Rn×d, whose rows we would like to cluster, and
the goal is to find some P in Qk which minimizes ‖(I − P )A‖2F .

In the below lemma, we again in blue write what conditions the distribution Π is drawn from
to ensure that all conditions are simultaneously satisfied with probability at least 1 − δ. For the
second condition, note that the rows of P ∗A are the centroids of the corresponding points after
clustering using P ∗, and thus P ∗A only has k distinct rows. One can see that a gaussian sketching
matrix Π, for example, satisfies the desired properties with m = O(log(k/δ)/ε2) rows.

Lemma 6.5.4 ([CEM+15]). Let A ∈ Rn×d be given. Suppose Π ∈ Rm×d. Let P ∗ denote the
optimal k-means clustering projection matrix for A, and P̃ ∗ for AΠ>. Let P̃ ∈ Rn×n be a clustering
projection matrix. Suppose Π ∈ Rm×d satisfies the following conditions:

• ‖(I − P̃ )P ∗A‖2F ≤ (1 + ε)‖(I − P̃ )P ∗AΠ>‖2F . ( ε2 ,
δ

3k2 , p)-JLMP for p ≥ 1; Eq. (5.3).

• ‖(I − P̃ ∗)AΠ>‖2F ≤ (1 + ε)‖(I − P̃ ∗)A‖2F . (ε, δ3 , p)-JLMP for p ≥ 1; Lemma 6.5.3.

• ‖(I − P ∗)AΠ>‖2F ≤ (1 + ε)‖(I − P ∗)A‖2F . (ε, δ3 , p)-JLMP for p ≥ 1; Lemma 6.5.3.

Then if P̃ satisifies
‖(I − P̃ )AΠ>‖2F ≤ γ‖(I − P̃ ∗)AΠ>‖2F ,

i.e. it is a γ-approximately optimal k-means clustering solution for the sketched input AΠ>, then

‖(I − P̃ )A‖2F ≤ (9 + 12ε+ 4ε2) · γ‖(I − P ∗)A‖2F .

Proof. Write B = P ∗A, B̄ = A−B = (I − P ∗)A. Then

‖A− P̃A‖F = ‖(I − P̃ )B + (I − P̃ )B̄‖F
≤ ‖(I − P̃ )B‖F + ‖(I − P̃ )B̄‖F (triangle inequality)

≤ ‖(I − P̃ )B‖F + ‖B̄‖F ((I − P̃ ) is a projection)

≤
√

1 + ε‖(I − P̃ )BΠ>‖F + ‖B̄‖F (first condition in lemma statement)

=
√

1 + ε‖(AΠ> − B̄Π>)− P̃ (AΠ> − B̄Π>)‖F + ‖B̄‖F (BΠ> = AΠ> − B̄Π>)

≤
√

1 + ε‖(I − P̃ )AΠ>‖F +
√

1 + ε‖(I − P̃ )B̄Π>‖F + ‖B̄‖F (triangle inequality)

≤
√

1 + ε‖(I − P̃ )AΠ>‖F +
√

1 + ε‖B̄Π>‖F + ‖B̄‖F (I − P̃ is a projection matrix)



94 CHAPTER 6. LINEAR ALGEBRA APPLICATIONS

≤
√

1 + ε
√
γ‖(I − P̃ ∗)AΠ>‖F +

√
1 + ε‖B̄Π>‖F + ‖B̄‖F (P̃ ∗ is optimal for AΠ>)

≤ (1 + ε)
√
γ‖(I − P̃ ∗)A‖F + (1 + ε)‖B̄‖F + ‖B̄‖F (conditions of lemma statement)

≤ (1 + ε)
√
γ‖(I − P ∗)A‖F + (1 + ε)‖B̄‖F + ‖B̄‖F (P ∗ is optimal for A)

≤ (3 + 2ε)
√
γ‖(I − P ∗)A‖F (B̄ = (I − P ∗)A, and γ ≥ 1)

Thus ‖A− P̃A‖2F ≤ (3 + 2ε)2γ‖(I − P ∗)A‖2F , as desired.



Chapter 7

Compressed Sensing

The field of compressed sensing is concerned with (approximately) recovering a signal that is (ap-
proximately) sparse in some known basis, based on a sublinear number of measurements. In other
words, if we arrange these measurements as rows of a matrix Π ∈ Rm×n, then given Πx for some
x ∈ Rn (m� n) we would like recover some x̃ given only access to Πx and Π such that ‖x− x̃‖ is
small, where this smallness depends on how close x is to being sparse. Recovery guarantees sought
are typically of the form

‖x− x̃‖A ≤ f(k) · min
‖z‖0≤k

‖x− z‖B

for some norms ‖ · ‖A, ‖ · ‖B where k is the sparsity parameter, so that z is the best k-sparse
approximation to x under the ‖ · ‖B norm (‖ · ‖0 denotes support size). For example if x actually
is k-sparse, then the right hand side is zero (simply choose z = x). In the norms we consider
this chapter (`p norms), the optimal z is simply the projection of x onto its top k coordinates in
magnitude, i.e. xhead(k) (which is x−xtail(k), to use the definition of Remark 4.1.1). Thus the right
hand side becomes f(k) · ‖xtail(k)‖p for some p.

A good example of approximate sparsity is that of images. An n×n pixelated image can be seen
as a 3n2 dimensional vector, where each of the n2 pixels corresponds to three dimensions (RGB
values). The color black is represented by the RGB tuple (0,0,0). Now, most interesting images
are not simply all black, i.e. they are not sparse (or even approximately sparse) in the standard
basis. However, most natural images are in fact sparse in the 2D Haar Wavelet basis. Rather
than describe this basis in terms of its basis vectors, we instead describe how to perform a change
into this basis from the standard basis. The main intuition is that in natural images, typically
adjacent pixels are of the same or similar color, except potentially for boundaries between objects
(but most pixels are not at a boundary). The change of basis into the 2D Haar Wavelet basis for
n2-dimensional vectors (which we view as n×n images) is thus as follows: we assume n is a power
of 2. Imagine the image is grayscale so that each pixel just has one associated value instead of
three values (RGB); the case of color images can be handled by applying the following transform
to each color separately. We describe how to transform the input image into the output image
after applying the transform. Divide the image pixels into (n/2)2 blocks, each block of which is
2× 2. The output image can be viewed as four images (top left, top right, bottom left, and bottom
right), each of which is (n/2) × (n/2), where each input block gives rise to four pixels: one pixel
per sub-image in the output block. Specifically if an input block has pixel values p1, p2, p3, p4, then
the top left image in the output has pixel value equal to their average (p1 + p2 + p3 + p4)/4. The
other three output sub-images have pixel values (p1 + p2 − p3 − p4)/4, (p1 − p2 + p3 − p4)/4, and
(p1−p2−p3 +p4)/4, respectively. We then recursively apply the transform to the top left sub-image
of the output. The base case is when n = 1, in which case we output the 1 input pixel itself. This

95



96 CHAPTER 7. COMPRESSED SENSING

procedure is invertible, and thus the linear transformation we describe has full rank, though in
practice since pixel values must be integers in [0, 255], actual implementations are not invertible
due to rounding when dividing by 4.

(a) (b)

Figure 7.1: The original image was 2048x2048 pixels. Image (a) applies just one level of the 2D
Haar Wavelet Transform on each of the RGB values per pixel separately, and (b) applies the full
recursion down to the 1x1 base case. The resulting image is approximately sparse (RGB values of
(0,0,0) correspond to black). If one zooms into this document and looks closely, some object edges
are still visible after the transform (the outline of my head and jacket collar), albeit faintly.

from PIL import Image

def haar(pixels, n):
if n == 1:

return
else:

L = [ [None]∗n for in range(n) ]
for i in xrange(n):

for j in xrange(n):
L[i][j] = pixels[i,j]

for i in xrange(n/2):
for j in xrange(n/2):

pixels[i,j] = tuple((L[2∗i][2∗j][k]+L[2∗i][2∗j+1][k]+L[2∗i+1][2∗j+1][k]+L[2∗i+1][2∗j][k])//4 for k in range(3))
pixels[i,j+n/2] = tuple((L[2∗i][2∗j][k]+L[2∗i][2∗j+1][k]−L[2∗i+1][2∗j+1][k]−L[2∗i+1][2∗j][k])//4 for k in range(3))
pixels[i+n/2,j] = tuple((L[2∗i][2∗j][k]−L[2∗i][2∗j+1][k]+L[2∗i+1][2∗j+1][k]−L[2∗i+1][2∗j][k])//4 for k in range(3))
pixels[i+n/2,j+n/2] = tuple((L[2∗i][2∗j][k]−L[2∗i][2∗j+1][k]−L[2∗i+1][2∗j+1][k]+L[2∗i+1][2∗j][k])//4 for k in range(3))

haar(pixels, n/2)

im = Image.open(’input.jpg’)
n = im.size[0] # we assume t h i s i s a power o f 2
haar(im.load(), n)
im.save(’output.jpg’)

Figure 7.2: Python code used to generate image (b) in Fig. 7.1, using the Python Imaging Library.

The types of schemes developed in the compressed sensing literature generally fall into one of
two categories: nonuniform (also known as for-each) schemes, and uniform (also known as for-all)
schemes. If we let A denote the recovery algorithm which returns x̃ from Πx (imagine that A has
Π hardcoded into its source code), then the difference between these two categories is as follows:

• Nonuniform: These are randomized schemes which satisfy the guarantee

∀x ∈ Rn, P
Π,A

(A(Πx) is a good approximation to x) ≥ 1− δ.

• Uniform: These schemes are either deterministic, or if randomized satisfy the guarantee

P
Π,A

(∀x ∈ Rn A(Πx) is a good approximation to x) ≥ 1− δ.



7.1. BASIS PURSUIT 97

We have already seen nonuniform schemes in this course when discussing the point query prob-
lem in Section 4.1. Recall in point query, when using a linear sketch Π we would like that given Πx,
for any i we can recover an approximate x̃i that is close to xi; if we set the failure probability to
be � 1/n, then this approximation holds for all i ∈ [n] simultaneously with good probability. The
CountMin sketch provides the `∞/`1 guarantee ‖x − x̃‖∞ ≤ (1/k) · ‖xtail(k)‖∞. The CountSketch

provides the `∞, `2 guarantee ‖x− x̃‖∞ ≤ (1/
√
k) · ‖xtail(k)‖2. These are both nonuniform schemes.

In this chapter, we will show how to obtain uniform schemes via measurements matrices that
satisfy the restricted isometry property (Definition 5.3.5). For a more thorough introduction to
compressed sensing, see the textbook by Foucart and Rauhut [FR13].

7.1 Basis Pursuit

If x is not just approximately sparse but actually k-sparse, we have already seen a deterministic (and
thus uniform) scheme to recover x exactly: the k-sparse recovery data structure of Subsection 4.2.1,
which is actually a linear sketch. For this we required that the measurement matrix Π ∈ Rm×n
satisfied the property that every m × 2k submatrix was of full column rank, which is equivalent
to Π>SΠS having no zero eigenvalues for any S ⊂ [n] of size 2k (where ΠS is the |S| × n matrix
obtained by restricting Π to only contain the columns in S). With such a matrix in hand, if x is
k-sparse we can recover it exactly given Πx by solving the following optimization problem:

min
z∈Rn

‖z‖0

s.t. Πz = Πx

Unfortunately, this optimization problem is NP-hard to solve in general [GJ79, Problem MP5],
though for particular Π can be tractable (e.g. the polynomial-time “syndrome decoding” algorithm
in the case that Π is as in Subsection 4.2.1).

What about the case though when x is not exactly k-sparse, but only approximately so? The
(ε, k)-restricted isometry property (RIP) provides a robustification of this property: for any S of size
k we not only require that Π>SΠS has no zero eigenvalues, but furthermore that all its eigenvalues
lie in the interval [1− ε, 1 + ε]. It turns out that if Π satisfies the RIP, there is a polynomial-time
algorithm to find an x̃ that well-approximates x, by solving a linear program [CRT06, Don06]. This
linear program is known as basis pursuit, and is the following:

min
z∈Rn

‖z‖1

s.t. Πz = Πx

Note this is a linear program since we can define variables y1, . . . , yn and add the constraints
yi ≥ zi, yi ≥ −zi for each i then minimize

∑
i yi.

We now show that if Π satisfies RIP, basis pursuit returns a good approximation to x.

Theorem 7.1.1 ([Can08]). If Π is (ε2k, 2k)-RIP with ε2k ≤
√

2− 1, and x̃ = x+ h is the optimal
solution to the basis pursuit linear program, then

‖h‖2 ≤ O
(

1√
k

)
‖xtail(k)‖1.

Proof. First, we define some notation.
For a vector x ∈ Rn and set S ⊆ [n], let xS be the vector with all of its coordinates outside

of S zeroed out. We use Ti to indicate the complement of Ti. Let T0 ⊆ [n] be the indices of the



98 CHAPTER 7. COMPRESSED SENSING

largest (in absolute value) k coordinates of x. Then for j ≥ 1, let Tj be the indices of the largest k
coordinates (in absolute value) of h∪i<jTi .

By the triangle inequality,

‖h‖2 = ‖hT0∪T1 + hT0∪T1
‖2

≤ ‖hT0∪T1‖2 + ‖hT0∪T1
‖2.

Our strategy for bounding h will be to show:

• ‖hT0∪T1
‖2 ≤ ‖hT0∪T1‖2 +O

(
1√
k

)
‖xtail(k)‖1, and

• ‖hT0∪T1‖2 ≤ O
(

1√
k

)
‖xtail(k)‖1).

Both parts rely on the following lemma.

Lemma 7.1.2. ∑
j≥2

‖hTj‖2 ≤
2√
k
‖xT c0 ‖1 + ‖hT0∪T1‖2.

Proof. We apply the shelling trick (recall Eq. (5.10)).∑
j≥2

‖hTj‖2 ≤
√
k
∑
j≥2

‖hTj‖∞ (hTj is k-sparse)

≤ 1√
k

∑
j≥2

‖hTj−1‖1 (shelling)

≤ 1√
k
‖hT0
‖1. (7.3)

Now since x̃ = x+ h is the minimizer of the LP, we must have

‖x‖1 ≥ ‖x+ h‖1
= ‖(x+ h)T0‖1 + ‖(x+ h)T0

‖1
≥ ‖xT0‖1 − ‖hT0‖1 + ‖hT0

‖1 − ‖xT0
‖1

by two applications of the triangle inequality. Rearranging,

‖hT0
‖1 ≤ ‖x‖1 − ‖xT0‖1 + ‖hT0‖1 + ‖xT0

‖1
= 2‖xT0

‖1 + ‖hT0‖1
≤ 2‖xT0

‖1 +
√
k‖hT0‖2 (Cauchy-Schwarz)

≤ 2‖xT0
‖1 +

√
k‖hT0∪T1‖2

Combining this upper bound with Eq. (7.3) yields the claim.



7.1. BASIS PURSUIT 99

Returning to the main proof, let us first upper bound the size of hT0∪T1
. We get:

‖hT0∪T1
‖2 =

∥∥∥∥∥∥
∑
j≥2

hTj

∥∥∥∥∥∥
2

≤
∑
j≥2

‖hTj‖2

≤ ‖hT0∪T1‖2 +
2√
k
‖xT0
‖1 (Lemma 7.1.2)

= ‖hT0∪T1‖2 +
2√
k
‖xtail(k)‖1.

To bound the size of hT0∪T1 , first observe that

ΠhT0∪T1 = Πh−
∑
j≥2

ΠhTj = −
∑
j≥2

ΠhTj

since h ∈ ker Π. Therefore,

‖ΠhT0∪T1‖22 = −
∑
j≥2

〈ΠhT0∪T1 ,ΠhTj 〉 ≤
∑
j≥2

(|〈ΠhT0 ,ΠhTj 〉|+ |〈ΠhT1 ,ΠhTj 〉|).

By part (b) of Lemma 5.3.6, each summand is at most

ε2k(‖hT0‖2 + ‖hT1‖2)‖hTj‖2 = ε2k

√
(‖hT0‖2 + ‖hT1‖2)2‖hTj‖2

= ε2k

√
‖hT0‖22 + ‖hT1‖22 + 2‖hT0‖2‖hT1‖2‖hTj‖2

≤ ε2k

√
2‖hT0‖22 + 2‖hT1‖22‖hTj‖2 (AM-GM)

= ε2k

√
2‖hT0∪T1‖2‖hTj‖2.

Thus

(1− ε2k)‖hT0∪T1‖22 ≤ ‖ΠhT0∪T1‖22
≤ ε2k

√
2‖hT0∪T1‖2

∑
j≥2

‖hTj‖2

≤ ε2k

√
2‖hT0∪T1‖2

(
2√
k
‖xT0
‖1 + ‖hT0∪T1‖2

)
(Lemma 7.1.2)

Cancelling a factor of ‖hT0∪T1‖2 from both sides and rearranging gives

‖hT0∪T1‖2 ≤
ε2k2
√

2

(1− ε2k − ε2k

√
2)
√
k
‖xT0
‖1 = O

(
1√
k

)
‖xtail(k)‖1,

with the last equality holding since ε2k <
√

2− 1. Putting everything together:

‖h‖2 ≤ ‖hT0∪T1
‖2 + ‖hT0∪T1‖2



100 CHAPTER 7. COMPRESSED SENSING

≤ 2‖hT0∪T1‖2 +
2√
k
‖xtail(k)‖1

≤ O
(

1√
k

)
‖xtail(k)‖1.

7.1.1 Obtaining RIP matrices

Thus far we have shown how to use RIP matrices in Subsection 5.3.3 to obtain Fast JL, and in
Section 7.1 for compressed sensing. But how does one obtain RIP matrices? There are generally
three ways:

• Via the JL lemma/OSE’s. Note that being an RIP matrix means being a subspace embed-
ding for

(
n
k

)
subspaces simultaneously (namely the set of all k-dimensional subspaces obtained

spanned by choosing k distinct standard basis vectors). A matrix with i.i.d. subgaussian en-
tries is an ε-OSE for d-dimensional subspaces with probability at least 1 − δ as long as its
number of rows is at least Ω(ε−2(d+ log(1/δ)). Setting d = k and δ < 1/

(
n
k

)
to union bound

gives that m = O(ε−2k log(n/k)) suffices.

• Analyzing suprema of random processes. There are other random matrices that peo-
ple have studied in the context of RIP, such as sampling rows from the Hadamard matrix
or Discrete Fourier Transform [CT06, RV08, Bou14, HR16]. One then wishes to analyze
EΠ supx∈Dn,k |‖Πx‖

2
2 − 1| and show that it is at most ε, where Dn,k is the set of all unit

norm vectors in Rn which are k-sparse. Some of these arguments use analyses such as Dud-
ley’s inequality, generic chaining, and other tools from the study of the suprema of random
processes.

• Ad hoc. Some analyses of RIP are “one-offs” in that the analysis was invented for the
specific matrix being studied and not used again in the context of analyzing RIP. For example,
motivated by an explicit, deterministic construction of RIP matrices, Bourgain et al. analyzed
a construction based on tools from analytic number theory [BDF+11]. The construction
achieves O(k2−γ(ε−1 log n)c) rows for some absolute constant c > 0 for a narrow range of
k close to

√
n. This is the only known explicit construction of an RIP matrix to achieve a

subquadratic number of rows in k.

• Incoherent matrices. A matrix Π ∈ Rm×n is said to be α-incoherent if (1) its columns πi
each have unit Euclidean norm, and (2) for all i 6= j, |〈πi, πj〉| ≤ α. We show below that
any such matrix with α ≤ ε/(k − 1) is α-incoherent. One can construct such matrices using
Reed-Solomon codes with m = O(α−2((log n)/(log log n+log(1/α)))2), or using random codes
with m = O(α−2 log n). Either of these leads to RIP matrices with ε−2k2 logc n rows.

Theorem 7.1.3 (Gershgorin circle theorem). Let λ1, . . . , λN ∈ C be the eigenvalues of a matrix
A ∈ RN×N . Then for each i ∈ [N ], there exists a j ∈ [N ] such that λi lives in a complex disc about
Aj,j of radius

∑
r 6=j |Aj,r|.

Proof. Let vi be the eigenvector corresponding to λi. Let j be such that ‖vi‖∞ = |(vi)j |. Then
(Avi)j = λi(vi)j , but also

(Avi)j = Aj,j(vi)j +
∑
r 6=j

Ar,j(vi)r.



7.2. ITERATIVE HARD THRESHOLDING 101

Thus

(vi)j(Aj,j − λi) =
∑
r 6=j

Ar,j(vi)r,

implying

|Aj,j − λi| =

∣∣∣∣∣∣
∑
r 6=j

Ar,j
(vi)r
(vi)j

∣∣∣∣∣∣ ≤
∑
r 6=j

∣∣∣∣Ar,j (vi)r
(vi)j

∣∣∣∣ ≤∑
r 6=j
|Ar,j |.

Corollary 7.1.4. If Π ∈ Rm×n is α-incoherent for α ≤ ε/(k − 1), then Π satisfies (ε, k)-RIP.

Proof. Let S ⊂ [n] be of size k. We would like that all the eigenvalues of AS := Π>SΠS lie in
the interval [1 − ε, 1 + ε], where ΠS ∈ Rm×k is the restriction of Π to columns in S. Note all
diagonal entries of AS are 1 and the off-diagonals are at most α in magnitude due to incoherence.
Furthermore all the eigenvalues are real by the spectral theorem, since AS is a real, symmetric
matrix. Thus by the Gershgorin circle theorem, all eigenvalues of AS are in the interval [1−α(k−
1), 1 + α(k − 1)], as desired.

7.2 Iterative Hard Thresholding

Though Basis Pursuit provides a uniform recovery guarantee, we would prefer to not use a generic
LP solver as that would be slow. Thankfully, there are fast iterative approaches developed for
(approximately) recovering x from measurements which have running time nearly linear (if the
measurement matrix supports nearly linear time matrix-vector multiplication, such as sampling
rows from the DFT). An iterative approach called CoSAMP was first introduced by Needell and
Tropp [NT08]. In this section we cover a different algorithm, Iterative Hard Thresholding (IHT)
and it is due to Blumensath and Davies [BD09].

Algorithm 1 Iterative Hard Thresholding (IHT).

1: function IHT(Π, y(= Πx+ e), k, T )
2: x[0] ← 0
3: for t = 0 · · ·T − 1 do
4: x[t+1] ← Hk(x

[t] + Π>(y −Πx[t])) . Hk(z) := zhead(k)

5: end for
6: return x[T ]

7: end function

The IHT algorithm starts with initial iterate x[0] = 0 then iteratively improves it to move closer
to x. Suppose the iterates produced over T iterations are x[1], · · · , x[T ]. Then the main theorem of
IHT is as follows.

Theorem 7.2.1 ([BD09]). If Π satisfies (ε, 3k)-RIP for ε < 1
4
√

2
, then ∀ T ≥ 1

‖x[T ] − x‖2 . 2−T ‖x‖2 + ‖xtail(k)‖2 +
1√
k
‖xtail(k)‖1 + ‖e‖2 (7.4)

Here we consider a more general problem than Section 7.1; specifically we assume there may
be some post-measurement noise e, so that what we obtain from our measurements is actually not



102 CHAPTER 7. COMPRESSED SENSING

Πx, but rather Πx + e. For example, the measurements may be made by a physical device, and
our measurement readings will then have error introduced by finite precision and other potential
sources of noise.

Comparing to the guarantee of basis pursuit, Eq. (7.4) we have three extra terms: 2−T ‖x‖2,
‖xtail(k)‖2, and ‖e‖2. Note that the last term corresponds to the post-measurement noise and it
is unavoidable. For the second term, ‖xtail(k)‖2, we show (Claim 7.2.2) that it is dominated by

O(‖xtail(k/2)‖1/
√
k). Hence, the only difference is the exponentially decaying term 2−T ‖x‖2. In

turn, the IHT algorithm is much faster than using an off-the-shelf LP solver to solve basis pursuit.

Claim 7.2.2. ‖xtail(2k)‖2 ≤ 1√
k
‖xtail(k)‖1.

Proof. Without loss of generality assume |x1| ≥ |x2| ≥ · · · ≥ |xn|. We partition the coordinates
of x into blocks of size k with Bj = {(n/k)j + 1, . . . , (n/k)j + k}. Now we apply shelling (recall
Eq. (5.10)):

‖xtail(2k)‖22 =
∑
j≥3

‖xBj‖22

≤
∑
j≥3

k · ‖xBj‖2∞

≤
∑
j≥3

k ·
(‖xBj−1‖1

k

)2

(shelling)

=
∑
j≥2

1

k
· ‖xBj‖21

Now take square roots and use that
√
a+ b ≤

√
a+
√
b, noting that

∑
j≥2 ‖xBj‖1 = ‖xtail(k)‖1.

Now we focus on the proof of the convergence of IHT (proof of Theorem 7.2.1). Note in the
analysis we can assume that x is exactly k-sparse. More precisely, we decompose x = xhead(k) +
xtail(k) so that Πx+ e = Πxhead(k) + (Πxtail(k) + e) = Πxhead(k) + ẽ, defining ẽ as Πxtail(k) + e. Also,
subdivide each Bj into Cj , C

′
j each of size k/2, where Cj contains the first k/2 elements of Bj and

C ′j contains the next k/2 elements. Then

‖ẽ‖2 ≤ ‖e‖2 + ‖Πxtail(k)‖2
= ‖e‖2 + ‖

∑
j≥2

ΠxBj‖2

≤ ‖e‖2 +
∑
j≥2

‖ΠxBt‖2

≤ ‖e‖2 + (1 + ε)
∑
j≥2

‖xBj‖2 (RIP)

≤ ‖e‖2 + (1 + ε)
∑
j≥2

√
k · ‖xBj‖∞

≤ ‖e‖2 + (1 + ε)
∑
j≥2

√
k ·

(
‖xC′j−1

‖1
k/2

)

≤ ‖e‖2 +
2(1 + ε)√

k
‖xtail(k/2)‖1,



7.2. ITERATIVE HARD THRESHOLDING 103

which is an allowable error for Theorem 7.2.1.
We now prove Theorem 7.2.1.

Proof. We measure the progress of IHT based on the residual vector r[t] := x− x[t]. We show that
‖r[t]‖2 decreases at some rate as t increases. For analysis purposes, we define a[t+1] := x[t] +Π>(y−
Πx[t]) (note that x[t+1] = Hk(a

[t+1])).
We make the following definitions:

• Γ∗k = supp(x),

• Γ[t] = supp(x[t]), and

• B[t] = Γ∗k ∪ Γ[t].

We now bound ‖r[t+1]‖2. Below let B denote B[t+1] and B′ = B[t].

‖r[t+1]‖2 = ‖x− x[t+1]‖2
= ‖xB − x[t+1]

B ‖2
≤ ‖xB − a[t+1]

B ‖2 + ‖a[t+1]
B − x[t+1]

B ‖2
≤ 2‖xB − a[t+1]

B ‖2 (x[t+1] is the best k-sparse approx. to a[t+1])

= 2‖xB − x[t]
B −Π>B(y −Πx[t])‖2

= 2‖r[t]
B −Π>B(Πr[t] + e)‖2

= 2‖r[t]
B −Π>B(ΠBr

[t]
B + ΠB′\Br

[t]
B′\B + e)‖2 (r[t] = r

[t]
B + r

[t]
B′\B)

≤ 2‖(IB −Π>BΠB)r
[t]
B ‖2 + 2‖Π>BΠB′\Br

[t]
B′\B‖2 + 2‖Π>Be‖2 (triangle inequality)

≤ 2‖IB −Π>BΠB‖ · ‖r[t]
B ‖2 + 2‖Π>BΠB′\B‖ · ‖r

[t]
B′\B‖2 + 2‖Π>B‖ · ‖e‖2

≤ 2ε(‖r[t]
B ‖2 + ‖r[t]

B′\B‖2) + 2
√

1 + ε‖e‖2 (Lemma 5.3.6)

≤ 2
√

2ε‖r[t]‖2 + 3‖e‖2 (7.5)

≤ 1

2
‖r[t]‖2 + 3‖e‖2, (7.6)

Eq. (7.6) holds since ε ≤ 1/(4
√

2). Eq. (7.5) follows from AM-GM. To see this, write α = ‖r[t]
B ‖2, β =

‖r[t]
B′\B‖2, γ = ‖r[t]‖2, and note γ =

√
α2 + β2. Then

(α+ β)2 = (α2 + β2) + 2αβ

≤ (α2 + β2) + (α2 + β2) (AM-GM)

= 2γ2,

so that α+ β ≤
√

2γ, as claimed.
We then have from Eq. (7.6) that ‖r[t+1]‖2 ≤ (1/2)‖r[t]‖2 + 3‖e‖2. Since ‖r[0]‖2 = ‖x‖2, an

induction on t shows that for t ≥ 1, ‖r[t]‖2 ≤ 2−t‖x‖2 + 3(
∑t−1

i=0 2−i)‖e‖2, which is always at most
2−t‖x‖2 + 6‖e‖2.



104 CHAPTER 7. COMPRESSED SENSING



Chapter 8

Suprema of stochastic processes and
applications

A stochastic process is simply a collection of random variables, {Xt}t∈T . Often one considers such
processes that either have some temporal structure (i.e. the process evolves over time, such as
Brownian motion), or spatial structure so that there is some important metric structure on the
random variables that explains correlations between them, e.g. if one defines a distance such as
d(X,Y ) := (E(X − Y )2)1/2. In this chapter we focus on understanding E supt∈T Xt, and using
this understanding for sketching applications. We focus on spatial processes, where typically the
underlying metric structure helps us control the expected supremum.

Because of the applications we consider, we will be focused on (sub)gaussian processes. Here
there is some T ⊂ Rd, and Xt for t ∈ T is simply 〈g, t〉 for a gaussian vector g with mean zero and
identity covariance matrix. We have the following definition:

Definition 8.0.1. For a subset T ⊂ Rd, we define the gaussian mean width w(T ) by

w(T ) := E
g

sup
x∈S
〈g, x〉,

where g is a d-dimensional gaussian with mean 0 and identity covariance matrix.

8.1 Methods of bounding gaussian mean width

We present four different ways of bounding the mean width w(T ) of a set T ⊂ B`d2
, the unit

Euclidean ball in Rd. The methods presented are increasingly sophisticated.

Union bound. The first observation is that for x ∈ T , 〈g, x〉 is a gaussian with variance ‖x‖22 ≤ 1.
Thus (〈g, x〉)x∈T is a collection of |T | gaussians with variance at most 1, and thus we expect the
maximum to be O(

√
log T ). Details follow.

E
g

sup
x∈T
〈g, x〉 ≤

∫ ∞
0

P(sup
x∈T
|〈g, x〉| > t)dt

=

∫ t∗

0
P(sup
x∈T
|〈g, x〉| > t)︸ ︷︷ ︸
≤1

dt+

∫ ∞
t∗

P(sup
x∈T
|〈g, x〉| > t)dt

105



106 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS

≤ t∗ +
∑
x∈T

∫ ∞
t∗

P(|〈g, x〉| > t)dt

≤ t∗ + 2|T | · e−t2/2,

which is O(
√

log |T |) by choosing t∗ = c
√

log |T |.

ε-net. Let T ′ ⊆ T be an ε-net of T under `2. Then for any x ∈ T let x′ ∈ T ′ be the closest
element in T to x. Then

E sup
x∈T
〈g, x〉 ≤ E sup

x∈T
〈g, x′〉+ E sup

x∈T
〈g, x− x′〉

.
√

log |T ′|+ (sup
x∈T
‖x− x′‖2) · E sup

x∈T
〈g, x− x′

‖x− x′‖2
〉

.
√

log |T ′|+ ε
√

log |T |

Since ε can be picked arbitrarily, we have the bound w(T ) . infε≥0{ε
√

log |T |+ log1/2N (T, `2, ε)}.
Note this is more general than the union bound argument, which we simply recover by picking
ε = 0. We also note that if |T | is infinite, we can alternatively bound E supx∈T 〈g, x − x′〉 by ε

√
d

using Cauchy-Schwarz.

Dudley’s inequality. In Dudley’s inequality we pick not one ε-net, but an infinite sequence
of nets (Sk)

∞
k=0 where εk = 2−k. Without loss of generality we can assume |T | is finite, since

otherwise we can first approximate T ′ by an arbitrarily fine net (arbitraily small ε) as discussed
above, then apply Dudley’s inequality to T ′. Let πkx denote the closest point in Sk to x, and define
∆kx := πkx − πk−1x. Note S0 can be taken as {0}, since T is a subset of the unit ball. Then
x =

∑∞
k=1 ∆kx so that

E sup
x∈T
〈g, x〉 ≤

∞∑
k=1

E sup
x∈T
〈g,∆kx〉

≤
∞∑
k=1

(
sup
x∈T
‖∆kx‖2

)
· E sup

x∈T
〈g, ∆kx

‖∆kx‖2
〉

.
∞∑
k=1

(
sup
x∈T

(‖πkx‖2 + ‖πk−1x‖2)

)
· log1/2

(
N (T, `2, 1/2

k) · N (T, `2, 1/2
k−1
)

.
∞∑
k=1

1

2k
· log1/2N (T, `2,

1

2k
) (8.1)

The final bound above on w(T ) is known as Dudley’s inequality, and since the covering number
of the unit ball of an r-dimensional subspace of Rd under `2 is at most

√
r it implies together with

Gordon’s theorem that a bound of m = O(r/ε2) suffices for oblivious subspace embeddings (see
Subsection 6.2.3).

Note: the right hand side of Dudley’s inequality is often in the literature bounded by an integral.
That is, many authors write Dudley’s inequality as

w(T ) .
∫ ∞

0
log1/2N (T, `2, u)du.



8.1. METHODS OF BOUNDING GAUSSIAN MEAN WIDTH 107

Generic chaining. Let T be a finite subset of some normed vector space with norm ‖ · ‖X . We
say that a sequence T0 ⊆ T1 ⊆ . . . ⊆ T is admissible if |T0| = 1 and |Tr| ≤ 22r for all r ≥ 1, and
Tr = T for all r ≥ r0 for some r0. We define the γ2-functional

γ2(T, ‖ · ‖X) = inf sup
x∈T

∞∑
r=1

2r/2 · dX(x, Tr),

where the inf is taken over all admissible sequences.

The first observation is that the bound from Dudley’s inequality can be rewritten in an equiv-
alent form that only differs by a constant factor:

w(T ) . inf
{Tr}

∞∑
r=0

2r/2 · sup
x∈T

d`2(x, Tr),

where {Tr} is admissible. To see why, first observe that to optimize the choice of the Tr, we should
also do something like compute ε-nets: given a budget of 22r for the size of Tr, we should choose Tr
so that it an ε-net for the smallest value of ε possible under this size constraint. Note then that the
above supremum is ∈ (1/2, 1] for r = 0, 1, . . . , r1 − 1 for some r1, and in general is in (2−(k+1), 2−k]
for r = rk, . . . , rk+1− 1. During each of these “phases” (different k), the suprema above over x ∈ T
are the same up to a factor of 2, while the summation over r of 2r/2 is a geometric series dominated
by its last term and is thus O(2rk+1/2). Thus 2−k is essentially as in Eq. (8.1) with the O(2rk+1/2)
term serving the role of log1/2N (T, `2, 1/2

k).

A surprising result of Fernique, developed further by Talagrand, is that the inequality still holds
even if the supremum over x is taken outside the summation, i.e.

w(T ) . inf
{Tr}

sup
x∈T

∞∑
r=0

2r/2 · d`2(x, Tr).

The right hand side of the above is known as γ2(T, `2). We know prove that this is the case.

Henceforth, as in the proof of Dudley’s inequality we let πrx denote the closest point to x in
Tr, and ∆rx := πrx− πr−1x.

Theorem 8.1.1. For any T , w(T ) . γ2(T, `2).

Proof. For x ∈ T we can write x = π0x+
∑∞

r=1 ∆rx. Therefore

w(T ) ≤ E sup
x∈T
〈g, π0x〉+ E sup

x∈T

∞∑
r=1

〈g,∆rx〉

= E〈g, x0〉+ E sup
x∈T

∞∑
r=1

〈g,∆rx〉 (since |T0| = 1, so T0 = {x0} for some x0)

= E sup
x∈T

∞∑
r=1

〈g,∆rx〉

Define Xr(x) := 〈g,∆rx〉. Then by gaussian tail bounds, for any r and x we have

P(|Xr(x)| > t2r/2‖∆rx‖2) < 2e−t
22r . (8.2)



108 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS

Thus

E sup
x∈T

∞∑
r=1

〈g,∆rx〉 ≤
∫ ∞

0
P(sup
x∈T

∞∑
r=1

|Xr(x)| > u)du

=

(
sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

)
·
∫ ∞

0
P

(
sup
x∈T

∞∑
r=1

|Xr(x)| > t · sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

)
dt

≤

(
sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

)
·

[
3 +

∫ ∞
3

P

(
sup
x∈T

∞∑
r=1

|Xr(x)| > t · sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

)
dt

]

≤

(
sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

)
·

[
3 +

∫ ∞
3

∞∑
r=1

2e−t
2/2|Tr||Tr−1|

]
(Eq. (8.2) and union bound over all r and ∆rx)

<

(
sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

)
·

[
3 +

∫ ∞
3

∞∑
r=1

2e−t
22r(22r)2dt

]
(since |Tr| ≤ 22r)

. sup
x∈T

∞∑
r=1

2r/2‖∆rx‖2

≤ sup
x∈T

∞∑
r=1

2r/2 · (d`2(x, Tr) + d`2(x, Tr−1)) (triangle inequality)

. sup
x∈T

∞∑
r=1

2r/2 · d`2(x, Tr)

Since we can choose {Tr} to be any admissible sequence, we may choose it to minimize the above
expression, obtaining an upper bound on w(T ) of γ2(T, `2), as desired.

8.2 Instance-wise bounds for Johnson-Lindenstrauss

Consider the following setup: we have some T ⊆ Sd−1 (the unit Euclidean sphere in Rd, i.e.
Sd−1 := {x ∈ Rn : ‖x‖2 = 1}), and we would like some matrix Π ∈ Rm×d to satisfy

sup
x∈T
|‖Πx‖22 − 1| ≤ ε,

or if Π is random, that
E
Π

sup
x∈T
|‖Πx‖22 − 1| ≤ ε.

We can model the situation of the JL lemma, where we would like a low distortion embedding of
X ⊂ `2 into Rm, |X| = n, by setting T = {(x − y)/‖x − y‖2 : x, y ∈ X}. By choosing Π from
an appropriate distribution, we know by the DJL lemma that m = O(ε−2 log |T |) suffices. When
T is Sn−1 intersected with an r-dimensional linear subspace of Rd, m = O(r/ε2) suffices (Subsec-
tion 6.2.3). Also, a Π with i.i.d. subgaussian entries satisfies (ε, k)-RIP for m = O(ε−2k log(ed/k)),
corresponding to T being the set of all unit norm vectors with Euclidean norm exactly 1. What
should m be in general, as a function of T? Gordon gave an answer [Gor88] in terms of w(T ).

Theorem 8.2.1 ([Gor88]). Suppose Π ∈ Rm×d has Πi,j ∼ N (0, 1/m) independent. There exists
C > 0 such that for any T ⊆ Sd−1, m ≥ Cε−2(w2(T ) + 1) implies EΠ supx∈T |‖Πx‖22 − 1| ≤ ε.



8.2. INSTANCE-WISE BOUNDS FOR JOHNSON-LINDENSTRAUSS 109

The goal of this section is to prove (a version of) Gordon’s theorem; specifically, assuming
the majorizing measures theorem [Tal96], whose proof we do not give here, we will show that
the statement of Gordon’s theorem holds for Πi,j being independent ±1/

√
m [KM05] (in fact any

subgaussian distribution suffices, but we only provide the proof for Rademachers).
We prove Theorem 8.2.1 using the following theorem of Krahmer, Mendelson, and Rauhut

[KMR14]. Below ρX(A) denotes the radius of A under norm ‖ · ‖X . We use ‖ · ‖F to denote
Frobenius norm, and ‖ · ‖ to denote either `2 norm (for vectors) or `2 → `2 operator norm (for
matrices).

Theorem 8.2.2. Let A ⊂ Rq×q be arbitrary and σ1, . . . , σq be independent, uniform in {−1, 1}.
Then

E
σ

sup
A∈A

∣∣‖Aσ‖2 − E ‖Aσ‖2
∣∣ . γ2

2(A, ‖ · ‖) + γ2(A, ‖ · ‖) · ρF (A) + ρF (A) · ρ`2→2(A).

The KMR theorem was actually more general, where the Rademacher variables could be re-
placed by subgaussian random variables. We present just the proof of the Rademacher case.

Proof. Without loss of generality we can assume A is finite (else apply the theorem to a sufficiently
fine net, i.e. fine in `2 → `2 operator norm). Define

E = E
σ

sup
A∈A

∣∣‖Aσ‖2 − E ‖Aσ‖2
∣∣

and let Ai denote the ith column of A. Then by decoupling (Lemma 1.1.11)

E = E
σ

sup
A∈A

∣∣∣∣∣∣
∑
i 6=j

σiσj
〈
Ai, Aj

〉∣∣∣∣∣∣
≤ 4 · E

σ,σ′
sup
A∈A

∣∣∣∣∣∣
∑
i,j

σiσ
′
j

〈
Ai, Aj

〉∣∣∣∣∣∣
= 4 · E

σ,σ′
sup
A∈A

∣∣〈Aσ,Aσ′〉∣∣ .
Let {Tr}∞r=0 be admissible for A. Direct computation shows

〈
Aσ,Aσ′

〉
=
〈
(π0A)σ, (π0A)σ′

〉
+

∞∑
r=1

〈
(∆rA)σ, (πr−1A)σ′

〉︸ ︷︷ ︸
Xr(A)

+

∞∑
r=1

〈
(πrA)σ, (∆rA)σ′

〉︸ ︷︷ ︸
Yr(A)

.

We have T0 = {A0} for some A0 ∈ A. Thus Eσ,σ′ |〈(π0A)σ, (π0A)σ′〉| equals

E
σ,σ′

∣∣∣σ>A>0 A0σ
′
∣∣∣ ≤ ( E

σ,σ′

(
σ>A>0 A0σ

′
)2
)1/2

= ‖A>0 A0‖F ≤ ‖A0‖F ‖A0‖ ≤ ρF (A) · ρ`2→2(A).

Thus,

E
σ,σ′

sup
A∈A

∣∣〈Aσ,Aσ′〉∣∣ ≤ ρF (A) · ρ`2→2(A) + E
σ,σ′

sup
A∈A

∞∑
r=1

|Xr(A)|+ E
σ,σ′

sup
A∈A

∞∑
r=1

|Yr(A)|.

We focus on the first summation; handling the second summation over Yr(A) is similar.



110 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS

Note Xr(A) = 〈(∆rA)σ, (πr−1A)σ′〉 =
〈
σ, (∆rA)>(πr−1A)σ′

〉
. Thus

P(|Xr(A)| > t2r/2 · ‖(∆rA)>(πr−1A)σ′‖) ≤ 2e−t
22r/2 . (Khintchine)

Let E(A) be the event that for all r ≥ 1 simultaneously, |Xr(A)| ≤ t2r/2 · ‖∆rA‖ · supA∈A ‖Aσ′‖.
Then

P(∃A ∈ A s.t. ¬E(A)) .
∞∑
r=1

|Tr| · |Tr−1| · e−t
22r/2

≤
∞∑
r=1

22r+1 · e−t22r/2.

Therefore

E
σ,σ′

sup
A∈A

∞∑
r=1

|Xr(A)| = E
σ′

∫ ∞
0

P
σ

(
sup
A∈A

∞∑
r=1

|Xr(A)| > t

)
dt,

which by a change of variables is equal to

E
σ′

(
sup
A∈A
‖Aσ′‖ ·

(
sup
A∈A

∞∑
r=1

2r/2‖∆rA‖

)

× ·
∫ ∞

0
P
σ

(
sup
A∈A

∞∑
r=1

|Xr(A)| > t sup
A∈A

∞∑
r=1

2r/2 · ‖∆rA‖ · sup
A∈A
‖Aσ′‖

)
dt

)

≤
(
E
σ′

sup
A∈A
‖Aσ′‖

)
·

(
sup
A∈A

∞∑
r=1

2r/2‖∆rA‖

)
·

[
3 +

∞∑
r=1

∫ ∞
3

22r+1
e−t

22r/2dt

]

.

(
E
σ′

sup
A∈A
‖Aσ′‖

)
· sup
A∈A

∞∑
r=1

2r/2‖∆rA‖

.

(
E
σ′

sup
A∈A
‖Aσ′‖

)
· sup
A∈A

∞∑
r=1

2r/2 · d`2→`2(A, Tr),

since ‖∆rA‖ ≤ d`2→`2(A, Tr−1) + d`2→`2(A, Tr) via the triangle inequality. Choosing admissible
T0 ⊆ T1 ⊆ . . . ⊆ T to minimize the above expression,

E . ρF (A) · ρ`2→2(A) + γ2(A, ‖ · ‖) · E
σ′

sup
A∈A
‖Aσ′‖.

Now observe

E
σ′

(
sup
A∈A
‖Aσ′‖

)
≤
(
E
σ′

sup
A∈A
‖Aσ′‖2

)1/2

≤
(
E
σ′

(
sup
A∈A

∣∣∣∣‖Aσ′‖2 − E
σ′
‖Aσ′‖2

∣∣∣∣+ E
σ′
‖Aσ′‖2

))1/2

=

(
E
σ′

sup
A∈A

(∣∣∣∣‖Aσ′‖2 − E
σ′
‖Aσ′‖2

∣∣∣∣+ ‖A‖2F
))1/2



8.2. INSTANCE-WISE BOUNDS FOR JOHNSON-LINDENSTRAUSS 111

≤
√
E + ρF (A)

Thus in summary,

E . ρF (A) · ρ`2→`2(A) + γ2(A, ‖ · ‖) · (
√
E + ρF (A)).

This implies E is at most the square of the larger root of the associated quadratic equation, which
gives the theorem.

Now we use the KMR theorem (together with majorizing measures) to recover Theorem 8.2.1
(see also [KM05, MPTJ07, Dir16]). We again only discuss the Rademacher case.

Theorem 8.2.3. Let T ⊂ Rd be a set of vectors each of unit norm, and let ε ∈ (0, 1/2) be
arbitrary. Let Π ∈ Rm×d be such that Πi,j = σi,j/

√
m for independent Rademacher σi,j, and where

m = Ω((γ2
2(T, ‖ · ‖) + 1)/ε2). Then

E sup
x∈T

∣∣‖Πx‖2 − 1
∣∣ < ε.

Proof. Similarly to Eq. (5.4), for x ∈ T let Ax denote the m×md matrix defined as follows:

Ax =
1√
m
·


x1 · · · xd 0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · 0 x1 · · · xd 0 · · · · · · · · · · · · 0
...

...
... · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 · · · · · · · · · · · · · · · · · · · · · 0 x1 · · · xd

 .
Then ‖Πx‖2 = ‖Axσ‖2, so letting A = {Ax : x ∈ T},

E sup
x∈T

∣∣‖Πx‖2 − 1
∣∣ = E sup

A∈A

∣∣‖Aσ‖2 − E ‖Aσ‖2
∣∣ .

We have ρF (A) = 1. Also A>xAx is a block-diagonal matrix, with m blocks each equal to xx>/m,
and thus the singular values of Ax are 0 and ‖x‖/

√
m, implying ρ`2→`2(A) = 1/

√
m. Similarly,

since Ax − Ay = Ax−y, for any vectors x, y we have ‖Ax − Ay‖ = ‖x− y‖, and thus γ2(A, ‖ · ‖) =
γ2(T, ‖ · ‖)/

√
m. Thus by the KMR theorem we have

E sup
x∈T

∣∣‖Πx‖2 − 1
∣∣ . γ2

2(T, ‖ · ‖)
m

+
γ2(T, ‖ · ‖)√

m
+

1√
m
,

which is at most ε for m as in the theorem statement.

Gordon’s theorem was actually stated differently in [Gor88] in two ways: (1) Gordon actually
only analyzed the case of Π having i.i.d. gaussian entries, and (2) the γ2(T, ‖·‖) terms in the theorem
statement were written as the mean width w(T ). For (1), the extension to arbitrary subgaussian
random variables was shown first in [KM05]. Note the KMR theorem only bounds an expectation;
thus if one wants to argue that the random variable in question is large with with probability at
most δ, the most obvious way is Markov, which would introduce JL a poor 1/δ2 dependence in m.
One could remedy this by doing Markov on the pth moment; the tightest known p-norm bound is
given in [Dir13, Theorem 6.5] (see also [Dir16, Theorem 4.8]).

For (2), Gordon actually wrote his paper before γ2 was even defined! The definition of γ2 given
here is due to Talagrand, who also showed that for all sets of vectors T ⊂ Rn, w(T ) ' γ2(T, ‖ · ‖)
[Tal14] (this is known as the “majorizing measures” theorem). In fact the upper bound w(T ) .
γ2(T, ‖ · ‖) was shown by Fernique [Fer75] (although γ2 was not defined at that point; Talagrand
later recast this upper bound in terms of his newly defined γ2-functional).

Theorem 8.2.1 is thus a corollary of Theorem 8.2.3 and the majorizing measures theorem.



112 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS

8.3 Heavy hitters: the BPTree

In this section, we show a result of [BCI+17] (building upon [BCIW16]) that leverages tools from
the study of suprema of stochastic processes (specifically Dudley’s inequality) to design an `2 heavy
hitters algorithm in insertion-only streams using only O(k log k) words of memory. Contrast this
with the CountSketch of Subsection 4.1.2, which uses O(k log n) words of memory for the same
task (where we have an insertion-only stream over the universe [n] updating a frequency vector
z ∈ Rn). Similarly to Subsection 4.1.2, in this section we focus on the tail heavy hitters guarantee.
That is, our data structure must respond to a query with a set L ⊆ [n] that with probability at
least 2/3 satisfies both (1) |L| = O(k), and (2) zi >

1√
k
‖ztail(k)‖2 =⇒ i ∈ L. In this section we

refer to an index i satisfying (2) as a heavy hitter. Note the number of heavy hitters is at most
2k− 1 (namely the k elements in the support of zhead(k), as well as the at most k− 1 elements from
the tail satisfying (2)). The correctness conditions then essentially say L should not be more than
a constant factor times bigger than its maximum possible size, and there should also be no false
negatives.

Before we describe the BPTree and its analysis, we first prove a modified form of Dudley’s
inequality that holds even under limited independence. We use the same definition of ∆kx as in
Section 8.1. Note the right hand side of the lemma conclusion is bounded by (N (T, `2, 1/2

k) ·
N (T, `2, 1/2

k−1))1/p ≤ (N (T, `2, 1/2
k))2/p, but we write the more precise form below as it can help

us reduce the choice of p in some applications by a factor of 2 (as we shall see later in this section).

Lemma 8.3.1. Let σ1, . . . , σn be p-wise independent Rademachers for p an even integer. Then

E sup
x∈T
|〈σ, x〉| . √p ·

∞∑
k=1

1

2k
·
(
|{x′ : ∃x ∈ T x′ = ∆kx}|

)1/p
Proof. Recall that by applying Lemma 1.1.15 to Khintchine’s inequality (Theorem 1.1.7), for inde-
pendent σi we have that

∀q ≥ 1, ‖〈σ, x〉‖q ≤
√
q‖x‖2

Note also that since p is even, ‖〈σ, x〉‖pp = E〈σ, x〉p (that is, the absolute value may be dropped),
and the right hand side is equal to

∑
i1,...,ip

 p∏
j=1

xij

E
p∏
j=1

σij

 ,

which is fully determined by p-wise independence. Our proof is then quite similar to that of
Eq. (8.1), except that we are only allowed to use tail bounds implied by the moment version of
Khintchine’s inequality up to the pth moment. Observe then that even under p-wise independence,

P
σ
(|〈σ, x〉| > λ) <

(√
p‖x‖2
λ

)p
(8.3)

Now first we show what this implies when using the union bound. Suppose T ⊆ B`n2 . Then

E sup
x∈T
|〈σ, x〉| =

∫ ∞
0

P(sup
x∈T
|〈σ, x〉| > t)dt

=

∫ t∗

0
P(sup
x∈T
|〈σ, x〉| > t)dt︸ ︷︷ ︸
≤1

+

∫ ∞
t∗

P(sup
x∈T
|〈σ, x〉| > t)dt



8.3. HEAVY HITTERS: THE BPTREE 113

≤ t∗ +
∑
x∈T

∫ ∞
t∗

P(|〈σ, x〉| > t)dt

≤ t∗ +
|T |
p− 1

·
(√

p

t∗

)p−1

(by Eq. (8.3))

.
√
p · |T |1/p (8.4)

where in the final equality we chose t∗ to make the two summands equal.
Then using the same definitions for πkx,∆kx, Sk as in Section 8.1,

E sup
x∈T
|〈σ, x〉| ≤

∞∑
k=1

E sup
x∈T
|〈σ,∆kx〉|

≤
∞∑
k=1

(
sup
x∈T
‖∆kx‖2

)
· E sup

x∈T
|〈σ, ∆kx

‖∆kx‖2
〉|

.
√
p ·

∞∑
k=1

(
sup
x∈T

(‖πkx‖2 + ‖πk−1x‖2)

)
·
(
|{x′ : ∃x ∈ T x′ = ∆kx}|

)1/p
.
√
p ·

∞∑
k=1

1

2k
·
(
|{x′ : ∃x ∈ T x′ = ∆kx}|

)1/p
(8.5)

We now state a lemma that will be useful for the BPTree.

Lemma 8.3.2. Let y be a frequency vector updated in an insertion-only stream, and y(t) denote
this vector at time t (i.e. after the first t updates). Let σ1, . . . , σn be 4-wise independent ±1. Then

E max
1≤t≤T

|〈σ, y(t)〉| . ‖y(T )‖2

Proof. Define v(t) := y(t)/‖y(T )‖2 ∈ B`n2 and V := {v(t)}Tt=1. We apply Lemma 8.3.1 to V . For
this, we first understand the structure of ε-nets of V . We give a greedy construction: our ε-net
is {v(t0), . . . , v(tr)} where t0 = 0 and for j ≥ 1 we define tj to be the smallest time t > tj−1 such
that ‖v(t) − v(tj−1)‖2 > ε (if such t exists). We first observe that r < 1/ε2. To see this, define
wj := v(tj) − v(tj−1). Then

1 ≥ ‖v(tr)‖22

= ‖
r∑
j=1

wj‖22

=
r∑
j=1

‖wj‖22 +
∑
j 6=j′
〈wj , w′j〉

≥
r∑
j=1

‖wj‖22 (wj , w
′
j have nonnegative coordinates)

> rε2

so that r < 1/ε2. We thus let the Sk be a sequence of 2−k-nets where |Sk| < 1/ε2 + 1. Next
observe that for any k ≥ 1, using the above-described nets, the number of possibilities for ∆kv is at



114 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS

most 2|Sk| (as opposed to the trivial bound |Sk| · |Sk−1|). This is because the net elements can be
arranged linearly (sorted by time), and given that v(t′) = πkv

(t), there are only two possibilities for
πk−1v

(t): either the closest net point backward in time from t′ in Sk−1, or forward in time. Since
|Sk| = O(22k), Lemma 8.3.1 yields E supv∈V |〈σ, v〉| .

∑∞
k=1

1
2k
· (22k)1/4 = O(1), as desired.

Narayanan showed that 4-wise independence is not only sufficient, but also necessary for the
conclusion of Lemma 8.3.2 to hold [Nar19]. That is, there are 3-wise independent distributions over
σ1, . . . , σn where the conclusion of the lemma does not hold.

The algorithm and analysis.

We now describe the BPTree. We first show a reduction from the heavy hitters problem to the super
heavy hitter problem. In particular, we show that a solution to the latter with failure probability
1/10 in space S words implies a solution to the former with failure probablity 1/kc for any constant
c with space O(Sk log k) [BCIW16]. We then show that the super heavy hitter problem can be
solved with S = O(1) memory.

Definition 8.3.3. We say an index i ∈ [n] is super-heavy if
∑

i z
2
i > 1000 ·

∑
j 6=i z

2
j .

The definition implies that there can be at most one super-heavy element in a stream. As an
algorithmic problem, we would like a solution which (1) is allowed to behave arbitrarily if the stream
does not have any super heavy, and (2) outputs the unique super-heavy element with probability
at least 9/10, if it exists.

Reduction to super heavy hitter. We reduce the heavy hitters problem to super heavy via
hashing. Suppose we have a solution to the super heavy hitter problem with failure probability
1/10. Set q = Ck, r = C log k for a large constant C > 0 and initialize qr copies of this data
structure Bt,j for t ∈ [r], j ∈ [q]. Also, draw hash functions h1, . . . , hr : [n] → [q] independently
from a pairwise independent hash family.

When we see i in the stream, we feed i to Bt,ht(j) for each t ∈ [r]. When queried for the list
L of heavy hitters, we return L = {i ∈ [n] : Bt,j .query() returns i for at least r/2 values of (t, j) ∈
[r] × [q]}. Thus if each Bt,j uses space S, has update time tu and query time tq, our final space
is O(Sk log k), our update time is O(tur) = O(tu log k), and our query time is O(k log2 ktq) (or
O(k log ktq) expected time if using a dictionary).

Theorem 8.3.4. The failure probability of the above reduction is at most 1/kc, where c can be
made an arbitrarily large constant by increasing C.

Proof. By construction, the output list L is guaranteed to have size at most 2q = O(k). Thus we
must only bound the probability of a false negative.

Let H ⊂ [n] be the set of all heavy hitters. Consider a specific heavy hitter i ∈ H. We will show
that the probability that i /∈ L is at most 1/(2kc+1), so that the probability of any heavy hitter
failing to be in L is at most |H|/(2kc+1) < 1/kc by a union bound. Fix a particular t ∈ [r]. Define
the event E1(t) that no j ∈ head(k) collides with i under ht, i.e. the event that h−1

t (ht(i))∩head(k) =
{i}. Also define the event E2(t) that

∑
j∈tail(k):ht(j)=ht(i)

z2
j ≥ ‖ztail(k)‖22/(1000k). Note if both

E1(t), E2(t) occur, then i is super heavy in the stream processed by Bt,ht(i). P(¬E1(t)) ≤ k/q ≤ 1/10
for C sufficiently large. To see this, one can define indicator random variables Xj(t) that are 1 iff
ht(j) = ht(i). Then

E
∑

j∈head(k)\{i}

Xj(t) =
∑

j∈head(k)\{i}

EXj(t) =
|head(k)|

q
=
k

q
,



8.3. HEAVY HITTERS: THE BPTREE 115

since EXj(t) = 1/q by pairwise independence of ht. Then ¬E1(t) holds iff the above summation is
at least 1, which happens with probability less than k/q by Markov’s inequality. Similarly for E2,

E
∑

j∈tail(k)

Xj(t) · z2
j =
‖ztail(k)‖22

q
,

and thus the probability that the above sum is at least ‖ztail(k)‖22/(1000k) is at most 1000k/q, which
is also at most 1/10 for C sufficiently large. Thus i is super heavy to Bt,ht(i) with probability at
least 4/5, implying i is output by Bt,ht(i) with probability at least (4/5) · (9/10) > 7/10.

Now observe that the expected number of t ∈ [r] for which Bt,ht(i) outputs i is 7r/10. Thus
the probability that fewer than r/2 such data structures output i is at most exp(−Ω(r)) by the
Chernoff bound. This is at most 1/(2kc+1) for C a sufficiently large constant.

An algorithm for super heavy hitter. We now describe an algorithm for super heavy hitter
using O(1) words of memory.

Let the stream length be ` and let T = ‖z(`)‖2 be the `2 norm of the frequency vector at the
end of the stream. We assume we know T exactly (an assumption we will remove later), and we
also assume the stream has some super heavy item i∗ ∈ [n] since otherwise the algorithm is allowed
to behave arbitrarily. We further assume that z2

i∗ ≥ C
∑

i 6=i z
2
i for some large constant C that is

implicit in the proof (it will be larger than 1000). Though the reduction to the super heavy problem
took C = 1000, the proof above goes through essentially verbatim for any large constant. We select
h : [N ]→ [N ] from a 2-wise independent family, then we attempt to learn the log2N bits of h(i∗)
one at a time, where N is Cn2. Then once we learn h(i∗), we simply return the next index i in the
stream such that h(i) = h(i∗) (we will guarantee that we learn i∗ before its last occurrence). The
stream may end before we learn all logN bits (e.g. it may be that N is much bigger than T ); this
is discussed in the next paragraph.

Write h(i∗) in binary as
∑t

j=0 bj2
j , where t = blog2Nc. We aim to learn the bj one bit

at a time, iteratively. Suppose we have learned bt, bt−1, . . . , bt−r+1 so far for r ≥ 0 and would
now like to learn bt−r (intially r = 0). We thus know that h(i∗) ∈ I, where I is the interval
[B · 2t−r+1, (B + 1) · 2t−r+1) ⊆ {0, . . . , N − 1} and B is the r-bit number btbt−1 . . . bt−r+1. We
draw σ ∈ {−1, 1}n from a 4-wise independent family and initialize two counters C0, C1 each to
zero. When we see i in the stream, if h(i) /∈ I then we ignore i and continue (i cannot possibly be
i∗, so it is not worth processing). Otherwise, we look at the (t − r)th bit of h(i): if it is b, then
we increment Cb by σi. We continue processing the stream in this way until the first time that
|Cb| ≥ d(T/11) · (2/3)r/2e for some b ∈ {0, 1}. We then declare that the (t− r)th bit of h(i∗) is b,
increment r, then iterate. We halt after learning all blog2Nc+1 bits of h(i∗), i.e. once we’ve learned
bit b0, then we return the next stream element i such that h(i) matches the bits we have learned
so far (thus we may not have learned all logN bits of h(i∗), but we have learned enough that a
unique index in the stream matches these bits). This concludes our description of the algorithm.

We now proceed to analysis. Let us write the (t − r)th bit of h(i∗) as b∗r ∈ {0, 1}. Let X ′i(r)
be the indicator random variable for the event that the jth bit of h(i) agrees with the jth bit
of h(i∗) for j = t, . . . , t − r and X ′′i (r) be the indicator for the event that the jth bits agree for
j = t, . . . , t− r+ 1 but then the (t− r)th bit differs. We also define X ′i∗(r) = X ′′i∗(r) = 0. Then we
can define vectors z′(r) and z′′(r), where z′(r)i = X ′i(r)zi, z

′′(r)i = X ′′i (r)zi, so that

C1−b∗r = 〈σ, z′′(r)〉︸ ︷︷ ︸
α′′(r)

, Cb∗r = σi∗zi∗ + 〈σ, z′(r)〉︸ ︷︷ ︸
α′(r)



116 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS

We also let z′(t) denote z′ after processing the tth update (“time t”), and z′′ similarly, and we use

C
(t)
b∗r

to denote 〈σ, z′(t)〉 (and similarly for C
(t)
1−b∗r

). We also similarly define α′(r)(t), α′′(r)(t).

Lemma 8.3.5. For C sufficiently large, with probability at least 9/10

∀r, t ≥ 0, |α′(r)(t)|, |α′′(r)(t)| ≤ zi∗
100
·
(

2

3

)r/2
. (8.6)

Proof. By Lemma 8.3.2, there is a constant c > 0 such that for any fixed r ≥ 0 we have

E
σ,h

max
1≤t≤`

|α′(r)(t)| ≤ c · E
h
‖z′(r)(`)‖2 (Lemma 8.3.2)

≤ c · (E
h
‖z′(r)(`)‖22)1/2 (Cauchy-Schwarz)

= c ·

∑
i 6=i∗

(EX ′i(r))z2
i

1/2

=
c

2(r+1)/2
·

∑
i 6=i∗

z2
i

1/2

<

(
c√
C

)
· zi∗

2(r+1)/2
(definition of super heaviness)

Thus by Markov’s inequality,

P
h

(
max
1≤t≤`

|α′(r)(t)| > 75
√

2czi∗√
C

·
(

2

3

)r/2)
<

1

150
·
(

3

4

)r/2
.

Therefore by a union bound over all r ≥ 0,

P
h

(
∃r, t ≥ 0, |α′(r)(t)| > 75

√
2czi∗√
C

·
(

2

3

)r/2)
<
∞∑
r=0

1

150
·
(

3

4

)r/2
<

1

20
.

An identical argument applies to |α′′(r)(t)|. The lemma statement the holds by a union bound over
both |α′(r)(t)| and |α′′(r)(t)| for all r, t ≥ 0 and setting C sufficiently large (C ≥ 2 · 7521002c2).

We condition on the event of Eq. (8.6). Then since |α′′(r) = |C1−b∗r | ≤ (z∗i /100)(2/3)r/2 for each
r, we will never incorrectly learn b∗r for any r. Furthermore since |α′(r)| is similarly small, we will
learn b∗r in the next at most d(T/11) · (2/3)r/2e+ +(z∗i /100)(2/3)r/2 ≤ dz∗i /10(2/3)r/2e occurrences
of i∗ in the stream after iteration r begins.

Note: i∗ is the unique index still in I after the first O(log min{n, T}) + z∗i /9 occurrences of i∗

in the stream, at which point we can simply return the next index i in I (i.e. the next index which
matches the bits we’ve learned so far).

Removing the assumption of knowing ‖z(`)‖2 exactly. We do not provide the full details
here, but only just a sketch. The first observation is that we do not need to know ‖z(`)‖2 exactly,
but rather it suffices to know a value T within a factor of two of this quantity. Since we do not know
this either, we guess T = 1, 2, . . . , 210 in parallel. We simultaneously run the AMS sketch in parallel
using 8-wise independence; it can be shown that the AMS sketch with this increased independence



8.3. HEAVY HITTERS: THE BPTREE 117

and O(1/α2) rows has the property that even if you query after every single update, with large
probability there will never be any time t such that the AMS output is not ‖z(t)‖2 ± α‖z(`)‖2 (see
[BCI+17]); we apply this with α a small constant. We call this guarantee `2-tracking, since we can
track ‖z(t)‖2 at all times t. Note that naively one would instantiate the failure probability of the
AMS sketch to be � 1/` then union bound over all time steps, but that would require memory
O(α−2 log `) words, which we avoid. Now, let us say at some time step we are running the algorithm
in parallel above for the guesses of T being 2j , . . . , 2j+10. When the tracker says that the guess
2j is too small, we simply kill that parallel instantiation, reclaim the space, then boot up a new
parallel instantiation which guesses T = 2j+11. This new instantiation has missed the prefix of the
stream up until this point, but in the case that ‖z(`)‖2 ≈ 2j+11, the prefix missed was insignificant
(since it only contained less than 0.1% of the occurrences of i∗).



118 CHAPTER 8. SUPREMA OF STOCHASTIC PROCESSES AND APPLICATIONS



Bibliography

[AC09] Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss transform and ap-
proximate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009. 66, 68, 69, 70,
78

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss
with binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003. 66

[ACH+13] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei,
and Ke Yi. Mergeable summaries. ACM Trans. Database Syst., 38(4):26:1–26:28, 2013.
28, 29

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure
via linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 459–467, 2012. 49

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile
streams with applications. In Proceedings of the 31st Conference on Computational
Complexity (CCC), pages 20:1–20:22, 2016. 43

[AK17] Noga Alon and Bo’az Klartag. Optimal compression of approximate inner products
and dimension reduction. In Proceedings of the 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 639–650, 2017. 62

[AL09] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual
BCH codes. Discret. Comput. Geom., 42(4):615–630, 2009. 66

[AL13] Nir Ailon and Edo Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss
transform. ACM Trans. Algorithms, 9(3):21:1–21:12, 2013. 66, 70

[Alo03] Noga Alon. Problems and results in extremal combinatorics–I. Discrete Mathematics,
273(1-3):31–53, 2003. 61, 65

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. 20, 31, 53

[AW20] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. CoRR, abs/2010.05846, 2020. 75

[BCI+17] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P. Woodruff. BPTree: An `2 heavy hitters algorithm using constant
memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), pages 361–376, 2017. 112, 117

119



120 BIBLIOGRAPHY

[BCIW16] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff.
Beating countsketch for heavy hitters in insertion streams. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 740–753,
2016. 112, 114

[BD09] Thomas Blumensath and Mike E. Davies. A simple, efficient and near optimal algo-
rithm for compressed sensing. In ICASSP, 2009. 101

[BDF+11] Jean Bourgain, Stephen Dilworth, Kevin Ford, Sergei Konyagin, and Denka
Kutzarova. Explicit constructions of rip matrices and related problems. Duke Math-
ematical Journal, pages 145–185, 2011. 100

[BDN15] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in Euclidean space. Geometric and Functional Analysis
(GAFA), to appear, 2015. Preliminary version in STOC 2015. 82

[BJKS04] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. J. Comput. Syst. Sci.,
68(4):702–732, 2004. 38, 39, 53

[B la20] Jaros law B lasiok. Optimal streaming and tracking distinct elements with high prob-
ability. ACM Trans. Algorithms, 16(1):3:1–3:28, 2020. 20

[BOR10] Vladimir Braverman, Rafail Ostrovsky, and Yuval Rabani. Rademacher chaos,
random Eulerian graphs and the sparse Johnson-Lindenstrauss transform. CoRR,
abs/1011.2590, 2010. 66

[Bou14] Jean Bourgain. An improved estimate in the restricted isometry problem. Geometric
Aspects of Functional Analysis, Lecture Notes in Mathematics Volume 2116:65–70,
2014. 71, 100

[BR94] Mihir Bellare and John Rompel. Randomness-efficient oblivious sampling. In Pro-
ceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS),
pages 276–287, 1994. 51

[Bro93] Andrej Brodnik. Computation of the least significant set bit. In ERK, 1993. 23

[BSS12] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan spar-
sifiers. SIAM J. Comput., 41(6):1704–1721, 2012. 82

[BYJK+02] Ziv Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In RANDOM, pages 1–10, 2002. 19

[BZMD15] Christos Boutsidis, Anastasios Zouzias, Michael W. Mahoney, and Petros Drineas.
Randomized dimensionality reduction for k-means clustering. IEEE Trans. Inf. The-
ory, 61(2):1045–1062, 2015. 90

[Can08] Emmanuel Candès. The restricted isometry property and its implications for com-
pressed sensing. Comptes Rendus Mathematique, 346(9-10):589–592, 2008. 97

[CCF04] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items
in data streams. Theor. Comput. Sci., 312(1):3–15, 2004. 47



BIBLIOGRAPHY 121

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting (STOC), pages 163–172, 2015. 89, 90, 93

[CJN18] Michael B. Cohen, T.S. Jayram, and Jelani Nelson. Simple analyses of the Sparse
Johnson-Lindenstrauss transform. In Proceedings of the 1st Annual Symposium on
Simplicity in Algorithms (SOSA), 2018. 66, 67

[CK16] Amit Chakrabarti and Sagar Kale. Strong fooling sets for multi-player communication
with applications to deterministic estimation of stream statistics. In Proceedings of the
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
41–50, 2016. 34

[CKL+20] Graham Cormode, Zohar S. Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý.
Relative error streaming quantiles. CoRR, abs/2004.01668, 2020. 24

[CM05] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005. 44, 46

[CMS76] John M. Chambers, Colin L. Mallows, , and B. W. Stuck. A method for simulating
stable random variables. J. Amer. Statist. Assoc., 71:340–344, 1976. 56

[CNW16] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming (ICALP), pages 11:1–11:14, 2016. Full
version at https://arxiv.org/abs/1507.02268v3. 70, 78, 82

[Coh16] Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 278–287, 2016. 82, 83

[CR12] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012. 40

[CRT06] Emmanuel J. Candés, Justin K. Romberg, and Terence Tao. Robust uncertainty
principles: exact signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory, 52(2):489–509, 2006. 97

[CT05] Emmaual Candés and Terence Tao. Decoding by linear programming. IEEE Trans.
Inform. Theory, 51(12):4203–4215, 2005. 70

[CT06] Emmanuel J. Candès and Terence Tao. Near-optimal signal recovery from random
projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52:5406–
5425, 2006. 71, 100

[CV20] Graham Cormode and Pavel Veselý. A tight lower bound for comparison-based quan-
tile summaries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems (PODS), pages 81–93, 2020. 23, 24

[CW09] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting (STOC), pages 205–214, 2009. 77

https://arxiv.org/abs/1507.02268v3


122 BIBLIOGRAPHY

[CW17] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In J. ACM, pages 54:1–54:45, 2017. 82, 83, 84

[CY20] Graham Cormode and Ke Yi. Small Summaries for Big Data. Cambridge University
Press, 2020. To be published. Draft at http://dimacs.rutgers.edu/~graham/ssbd.
html. 24, 26

[Dir13] Sjoerd Dirksen. Tail bounds via generic chaining. CoRR, abs/1309.3522v2, 2013. 111

[Dir16] Sjoerd Dirksen. Dimensionality reduction with subgaussian matrices: a unified theory.
Foundations of Computational Mathematics, 16(5):1367–1396, 2016. 111

[DKM06] Petros Drineas, Ravi Kannan, and Michael Mahoney. Fast monte carlo algorithms for
matrices I: Approximating matrix multiplication. SIAM J. Comput, 36(1):132–157,
2006. 75

[DKN10] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools
degree-2 threshold functions. In 51th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 11–20, 2010. 10

[DKS10] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss
transform. In Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 341–350, 2010. 66

[dlPnG99] Victor de la Peña and Evarist Giné. Decoupling: From dependence to independence.
Probability and its Applications. Springer-Verlag, New York, 1999. 9

[DMM06] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Sampling algorithms for
`2 regression and applications. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1127–1136, 2006. 80

[DMMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff.
Fast approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res.,
13:3475–3506, 2012. 82

[Don06] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306,
2006. 97

[FEFGM07] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorith. In Proceedings of the
2007 International Conference on the Analysis of Algorithms (AoFA), 2007. 20

[Fer75] Xavier Fernique. Regularité des trajectoires des fonctions aléatoires gaussiennes. Lec-
ture Notes in Math., 480:1–96, 1975. 111

[Fla85] Philippe Flajolet. Approximate counting: A detailed analysis. BIT Comput. Sci.
Sect., 25(1):113–134, 1985. 15

[FM85] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985. 16

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive
Sensing. Birkhaüser, Boston, 2013. 97

http://dimacs.rutgers.edu/~graham/ssbd.html
http://dimacs.rutgers.edu/~graham/ssbd.html


BIBLIOGRAPHY 123

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. 23

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979. 97

[GK01] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quan-
tile summaries. In Proceedings of the ACM SIGMOD international conference on
Management of data (SIGMOD), pages 58–66, 2001. 24

[GK16] Michael B. Greenwald and Sanjeev Khanna. Quantiles and equi-depth histograms over
streams. In Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors, Data
Stream Management - Processing High-Speed Data Streams, Data-Centric Systems and
Applications, pages 45–86. Springer, 2016. 24

[Gor88] Yehoram Gordon. On Milman’s inequality and random subspaces which escape
through a mesh in Rn. Geometric Aspects of Functional Analysis, pages 84–106,
1988. 108, 111

[GU18] Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication
using powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1029–1046,
2018. 75

[HR16] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier
matrices. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 288–297, 2016. 71, 100

[HW71] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic
forms in independent random variables. Ann. Math. Statist., 42:1079–1083, 1971. 10

[ILL+19] Nikita Ivkin, Edo Liberty, Kevin J. Lang, Zohar S. Karnin, and Vladimir Braver-
man. Streaming quantiles algorithms with small space and update time. CoRR,
abs/1907.00236, 2019. 24

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006. 53, 54

[IW05] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency mo-
ments of data streams. In Proceedings of the 37th Annual ACM Symposium on Theory
of Computing (STOC), pages 202–208, 2005. 39, 53

[JL84] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into
a Hilbert space. Contemporary Mathematics, 26:189–206, 1984. 59, 61, 66

[JST11] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
pages 49–58, 2011. 50

[JW13] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with subconstant error. ACM Transactions on
Algorithms, 9(3):26, 2013. 20, 62



124 BIBLIOGRAPHY

[KLL16] Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. Optimal quantile approximation
in streams. In Proceedings of the 57th 57th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 71–78, 2016. 24, 30

[KM05] Bo’az Klartag and Shahar Mendelson. Empirical processes and random projections.
J. Funct. Anal., 225(1):229–245, 2005. 109, 111

[KMN11] Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit Johnson-
Lindenstrauss families. In RANDOM, pages 628–639, 2011. 62

[KMR14] Felix Krahmer, Shahar Mendelson, , and Holger Rauhut. Suprema of chaos processes
and the restricted isometry property. Comm. Pure Appl. Math., 67(11):1877–1904,
2014. 109

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997. 37

[KN10] Daniel M. Kane and Jelani Nelson. A derandomized sparse Johnson-Lindenstrauss
transform. CoRR, abs/1006.3585, 2010. 66

[KN14] Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. Journal
of the ACM, 61(1):4, 2014. 66, 67, 78

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff,
and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers
and finding duplicates in streams. In Proceedings of the 58th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pages 475–486, 2017. 50

[KNW10a] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity
of sketching and streaming small norms. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1161–1178, 2010. 55,
58

[KNW10b] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for
the distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages 41–
52, 2010. 20

[KP20] John Kallaugher and Eric Price. Separations and equivalences between turnstile
streaming and linear sketching. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1223–1236, 2020. 43

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discret. Math., 5(4):545–557, 1992. 38

[KW11] Felix Krahmer and Rachel Ward. New and improved JohnsonLindenstrauss embed-
dings via the restricted isometry property. SIAM Journal on Mathematical Analysis,
43(3):1269–1281, 2011. 66, 70

[LN16] Kasper Green Larsen and Jelani Nelson. The johnson-lindenstrauss lemma is optimal
for linear dimensionality reduction. In Proceedings of the 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 82:1–82:11, 2016.
61



BIBLIOGRAPHY 125

[LN17] Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss
lemma. In Proceedings of the 58th IEEE Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 633–638, 2017. 61, 62

[LNNT16] Kasper Green Larsen, Jelani Nelson, Huy L. Nguy˜̂en, and Mikkel Thorup. Heavy
hitters via cluster-preserving clustering. In Proceedings of the 57th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2016. 47

[LNW14] Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might
as well be linear sketches. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing (STOC), pages 174–183, 2014. 43

[LS17] Yin Tat Lee and He Sun. An SDP-based algorithm for linear-sized spectral sparsifi-
cation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 678–687, 2017. 82

[LS18] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. SIAM J. Comput., 47(6):2315–2336, 2018. 82

[Lum18] Jérémie O. Lumbroso. The story of HyperLogLog: How Flajolet processed streams
with coin flips. CoRR, abs/1805.00612v2, 2018. 20

[McG14] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20,
2014. 49

[MM13] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression. In Proceedings of the
45th ACM Symposium on Theory of Computing (STOC), pages 91–100, 2013. 82, 83

[MMR19] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of
johnson-lindenstrauss transform for k-means and k-medians clustering. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages
1027–1038, 2019. 90, 93

[Mor78] Robert Morris. Counting large numbers of events in small registers. Commun. ACM,
21(10):840–842, 1978. 13, 15

[MPTJ07] Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Reconstruction and
subgaussian operators in asymptotic geometric analysis. Geometric and Functional
Analysis, 17:1248–1282, 2007. 111

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate
medians and other quantiles in one pass and with limited memory. In Proceedings
ACM SIGMOD International Conference on Management of Data (SIGMOD), pages
426–435, 1998. 24, 27

[Nar18] Shyam Narayanan. Deterministic O(1)-approximation algorithms to 1-center cluster-
ing with outliers. In APPROX, pages 21:1–21:19, 2018. 77

[Nar19] Shyam Narayanan. 3-wise independent random walks can be slightly unbounded.
CoRR, abs/1807.04910v2, 2019. 114



126 BIBLIOGRAPHY

[Nel11] Jelani Nelson. Sketching and Streaming High-Dimensional Vectors. PhD thesis, Mas-
sachusetts Institute of Technology, June 2011. 54

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Comb.,
12(4):449–461, 1992. 56

[NN13a] Jelani Nelson and Huy L. Nguy˜̂en. OSNAP: faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 117–126, 2013. 82, 83

[NN13b] Jelani Nelson and Huy L. Nguy˜̂en. Sparsity lower bounds for dimensionality-reducing
maps. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC),
pages 101–10, 2013. 66

[NN14] Jelani Nelson and Huy L. Nguy˜̂en. Lower bounds for oblivious subspace embeddings.
In ICALP, pages 883–894, 2014. 83

[Nol10] John P. Nolan. Stable Distributions — Models for Heavy Tailed Data. Birkhauser,
2010. 54

[NT08] Deanna Needell and Joel A. Tropp. CoSAMP: Iterative signal recovery from incom-
plete and inaccurate samples. Applied and Computational Harmonic Analysis, 2008.
101

[NY19] Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming
spanning forest computation. In Proceedings of the 30th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 1844–1860, 2019. 49, 53

[NY20] Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting, 2020. 15

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness. Theor.
Comput. Sci., 106(2):385–390, 1992. 38

[Rud99] Mark Rudelson. Random vectors in the isotropic position. J. Functional Analysis,
164(1):60–72, 1999. 10

[RV08] Mark Rudelson and Roman Vershynin. On sparse reconstruction from Fourier
and Gaussian measurements. Communications on Pure and Applied Mathematics,
61(8):1025–1045, 2008. 71, 100

[RV13] Mark Rudelson and Roman Vershynin. Hanson-Wright inequality and sub-gaussian
concentration. arXiv, abs/1306.2872, 2013. 9

[Sar06] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
143–152, 2006. 75, 79, 82, 84, 87

[SBAS04] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri.
Medians and beyond: new aggregation techniques for sensor networks. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys),
pages 239–249, 2004. 24



BIBLIOGRAPHY 127

[She12] Alexander A. Sherstov. The communication complexity of gap hamming distance.
Theory Comput., 8(1):197–208, 2012. 40

[SS11] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, 2011. 80, 82

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding bounds
for applications with limited independence. SIAM J. Discret. Math., 8(2):223–250,
1995. 51

[Tal96] Michel Talagrand. Majorizing measures, the generic chaining. Ann. Probab., 24:1049–
1103, 1996. 109

[Tal14] Michel Talagrand. Upper and lower bounds for stochastic processes: modern methods
and classical problems. Springer, 2014. 111

[Tro11] Joel A. Tropp. Improved analysis of the subsampled randomized Hadamard transform.
Adv. Adapt. Data Anal., 3(1–2):115–126, 2011. Special issue on Sparse Representation
of Data and Images. 82

[TSJ08] D. Sivakumar T. S. Jayram, Ravi Kumar. The one-way communication complexity of
hamming distance. Theory of Computing, 4(1):129–135, 2008. 20, 40

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applica-
tions to linear probing and second moment estimation. SIAM J. Comput., 41(2):293–
331, 2012. 54, 67

[Vid12] Thomas Vidick. A concentration inequality for the overlap of a vector on a large
set, with application to the communication complexity of the gap-hamming-distance
problem. Chic. J. Theor. Comput. Sci., 2012. 40

[WC79] Mark N. Wegman and Larry Carter. New classes and applications of hash functions.
In Proceedings of the 20th Annual Symposium on Foundations of Computer Science
(FOCS), pages 175–182, 1979. 19

[Woo04] David P. Woodruff. Optimal space lower bounds for all frequency moments. In Proceed-
ings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 167–175, 2004. 20, 40

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014. 75

[Yu21] Huacheng Yu. Tight distributed sketching lower bound for connectivity. In Proceedings
of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.
49


	Introduction
	Probability Review

	Counting Problems
	Approximate counting
	Analysis of Morris' algorithm
	Morris+
	Morris++

	Distinct elements
	Idealized FM algorithm: freely stored randomness
	A non-idealized algorithm: KMV
	Another algorithm via geometric sampling

	Quantiles
	q-digest
	MRL
	KLL


	Lower Bounds
	Compression-based arguments
	Distinct elements
	Quantiles

	Communication Complexity
	Equality
	Disjointness
	Indexing, GapHamming, and Distinct Elements


	Linear Sketching
	Heavy hitters
	CountMin sketch
	CountSketch

	Graph sketching
	k-sparse recovery
	SupportFind
	AGM sketch

	Norm estimation
	AMS sketch
	Indyk's p-stable sketch
	Branching programs and pseudorandom generators


	Johnson-Lindenstrauss Transforms
	Proof of the Distributional Johnson-Lindenstrauss lemma
	Lower bound
	Distributional JL
	Optimal JL lower bound

	Speeding up Johnson-Lindenstrauss transforms
	Sparse Johnson-Lindenstrauss Transform
	Fast Johnson-Lindenstrauss Transform
	Krahmer-Ward theorem


	Linear algebra applications
	Approximate matrix multiplication
	Sampling approach
	Oblivious linear sketching approach

	Subspace embeddings
	Given an orthonormal basis
	Leverage score sampling
	Oblivious subspace embeddings

	Least squares regression
	Sketch-and-solve via subspace embeddings
	Sketch-and-solve via AMM and subspace embeddings
	Accelerating iterative solvers via sketching

	Approximate low-rank approximation
	Projection-cost preserving sketches
	k-means clustering


	Compressed Sensing
	Basis Pursuit
	Obtaining RIP matrices

	Iterative Hard Thresholding

	Suprema of stochastic processes and applications
	Methods of bounding gaussian mean width
	Instance-wise bounds for Johnson-Lindenstrauss
	Heavy hitters: the BPTree


