
CS 294-165 Sketching Algorithms — Fall 2020

Problem Set 1
Due: 11:59pm, Friday, October 16th

See homework policy at http://www.sketchingbigdata.org/fall20/syllabus/

Each problem is worth 15 points (except Problem 4).

Problem 1: Incoherent matrices. A matrix Π ∈ Rm×n is ε-incoherent if

1. For each column Πi, ‖Πi‖2 = 1.

2. For each i 6= j, |〈Πi,Πj〉| < ε.

In the lecture notes, Theorem 3.1.4 implies that for any n > 1 and ε ∈ (0, 1), there exists
a code C with n codewords, alphabet size q = O(1/ε), block length ` = O(ε−1 log n), and
relative distance 1− ε. This leads to an ε-incoherent matrix via the construction in Figure 1,
where the columns of Π are in correspondence with codewords in C.

1

1

1

0

0

0
0
0
0
0

0
0

1√
`
·

q

Figure 1: Each codeword gives one column of the incoherent matrix. Here q = 4, t = 3 and
the codeword is Ci = (1, 1, 3). The vector is m = qt dimensional with the coordinates broken
up into t blocks each of size q. A 1 is placed in the jth position in the location specified by
(Ci)j. The entire vector is normalized by 1/

√
` to have unit norm.

(a) (2 points) Consider the construction in Figure 1 to convert a code with n codewords,
block length `, alphabet size q, and relative distance ρ into a matrix Π ∈ Rm×n. For
what ε is it ε-incoherent? How many rows m does it have? Your answers should be in
terms of the code parameters.

It turns out one can achieve a better m than the code of Theorem 3.1.4 when ε is
sufficiently small. Suppose the alphabet size q is a prime power and consider the finite
field Fq. Consider all polynomials p1, . . . , pN ∈ Fq[x] of degree at most d where N = qd+1.
Define the Reed-Solomon code C1, . . . , CN as follows: ` = q where the jth entry of Ci is the
evaluation of pi on the jth element of Fq (so Ci is the evaluation table of pi).

(b) (5 points) If we still want to have at least n codewords, we need N ≥ n. Show how to
choose d, q so N ≥ n and the relative distance is 1 − ε, and show what this gives (in
big-Oh notation) for the number m of rows of the incoherent matrix Π we obtain.

(c) (3 points) How small does ε need to be as a function of n for the codes from part (b)
to give smaller m than the code from Theorem 3.1.4? If the turning point is εT , you
should provide an answer ε′T such that log(1/ε′T) = Θ(log(1/εT)).

(d) (5 points) Suppose one has an ε-incoherent matrix Π. Show how `1-point queries to x
being updated in the turnstile streaming model can be answered solely given y = Πx.
(Note then that part (b) implies a deterministic `1-point query algorithm with low
space in turnstile streams.) Hint: it may help to remember that Πx =

∑
i xiΠ

i.

OPEN PROBLEM: It is known that any ε-incoherent matrix with n columns must have
m = Ω(min{n, ε−2(log n)/ log(1/ε))} [1, Section 9]. Can the gap between upper and lower
bounds be closed? It is conceivable a better upper bound could be achieved by discovering
a better code construction.

Problem 2: Counting distinct elements with deletions. In Lecture 2 we showed how
to estimate the number of distinct elements in a stream in poly(ε−1 lg n) bits of space with
2/3 success probability, where all integers in the stream are in [n]. In Lecture 3, we gave a
different algorithm based on geometric sampling. Recall in the turnstile model, the distinct
elements problem asks us to estimate ‖x‖0 := |{i : xi 6= 0}| when all updates have ∆ = +1.
What if the updates in the stream are allowed to have ∆ ∈ {−1, 1} though? Show how to
alter the geometric sampling algorithm from Section 2.2.3 of the lecture notes to also handle
such negative updates. What is the space complexity of your solution? Any solution using
space poly(ε−1 lg(nL)) for this modified problem, where L is the length of the stream, will
receive full credit.

Problem 3: Insertion-only `1 heavy hitters. In class we considered turnstile streams
where a vector x ∈ Rn receives updates of the form “add ∆ to xi” in a stream. As mentioned,
insertion-only streams are a special case of turnstile streams where ∆ = 1 always (so we can
just imagine the stream is a sequence i1i2 · · · iL of integers in [n]). Also, recall in the point
query problem that after several updates we are asked a query on i for some i ∈ [n] and must
output a value in [xi−(1/k)‖x‖1, xi+(1/k)‖x‖1]. Consider the algorithm CounterPointQuery
below.

Algorithm CounterPointQuery:

1. Initialize B counter/index pairs (i1, Ci), . . . , (iB , CB) all to (0, 0)
2. update(i): if i = ij for some j ∈ [B], then increment Cj

else if none of the ij = i but some Cj = 0, then set ij = i, Cj = 1
else decrement every Cj by 1

3. query(i): if i = ij for some j ∈ [B], then output Cj

else output 0

2

(a) (10 points) Give an upper bound on what B needs to be to ensure that query(i) always
outputs a value in [xi − (1/k)‖x‖1, xi + (1/k)‖x‖1].

(b) (5 points) One can store the (ij, Cj) pairs in an array so that they consume B space
and updates take time O(B) (since finding whether some ij = i or decrementing all
counters would take O(B) time). Devise a data structure taking O(B) space to store
the (ij, Cj) pairs so that the update(i) operation above can be implemented in O(1)
time. Your data structure should probably use hashing, and the update time will be
O(1) expected time. Assume that integers in the range 1, . . . ,max{n, L} can be stored
in one unit of space, and that a computer can perform basic arithmetic operations on
integers of this size in constant time.

Challenge problem (no credit): Suppose in part (a) you want to have error satisfying the
tail guarantee, i.e. additive error ±(1/k)‖xtail(k)‖1 (see Remark 4.1.1 of the lecture notes).
Then what does B need to be?

Problem 4: (1 point) How much time did you spend on this problem set? If you can
remember the breakdown, please report this per problem. (sum of time spent solving problem
and typing up your solution)

References

[1] Noga Alon. Problems and results in extremal combinatorics–I Discrete Mathematics,
273(1-3): 31–53, 2003.

3

