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1 Fast JL transform

Typically we have some high-dimensional computational geometry problem, and we use JL to speed
up our algorithm in two steps: (1) apply a JL map II to reduce the problem to low dimension m,
then (2) solve the lower-dimensional problem. As m is made smaller, typically (2) becomes faster.
However, ideally we would also like step (1) to be as fast as possible. In this section, we investigate
two approaches to speed up the computation of Ilz.

One of the analyses will make use of the following Chernoff bound.

Theorem 1 (Chernoff bound). Let X1, ..., X,, be independent random variables in [0, 7|, and write
p:=E>.X;. Then

e w/T

The approach we cover here was investigated by Ailon and Chazelle [AC09]. This approach gives
a running time to compute Ilz of roughly O(dlogd). They called their transformation the Fast
Johnson-Lindenstrauss Transform (FJLT). A construction similar to theirs, which we will analyze

here, is the m x n matrix II defined as
[ d
II=4+/—SHD (1)
m

where S is an m x d sampling matrix with replacement (each row has a 1 in a uniformly random
location and zeroes elsewhere, and the rows are independent), H is a bounded orthonormal system,
and D = diag(«a) for a vector «a of d independent Rademachers. A bounded orthonormal system
is a matrix H € C9? such that H*H = I and max; ; |H; ;| < 1/v/d. For example, H can be the
Fourier matrix or Hadamard matrix.

The motivation for the construction (1) is speed: D can be applied in O(d) time, H in O(dlogd)
time (e.g. using the Fast Fourier Transform or divide and conquer in the case of the Hadamard
matrix), and S in O(m) time. Thus, overall, applying II to any fixed vector x takes O(dlogd) time.
Compare this with using a dense matrix of Rademachers, which takes O(md) time to apply.

We will now give some intuition behind why such a II works. Consider the sampling matrix S
which samples a random coordinate of z. If the norm of x is spread out among its coordinates then
in expectation the norm of Sx is the norm of x. But what do we do in the case where x has mass
only on a few coordinates. It is known that a Fourier matrix spreads out the mass of vectors with
highly concentrated mass and vice versa. So we multiply S with H and to handle the case where H
concentrates the mass of vectors with their mass spread out we finally multiply z in the beginning
by Dg.



1.1 Analysis of [AC09]

We will show that for m > ¢=21log(1/6) log(d/§), the random II described in (1) provides DJL. We
will consider the case of H as the normalized Hadamard matrix, so that every entry of H is in

{~1/vd,1/Vd}.
Theorem 2. Let x € R™ be an arbitrary unit norm vector, and suppose 0 < £,5 < 1/2. Also let
II= \/%SHD as described above with a number of rows equal to m > = 2log(1/5)log(n/8). Then

P(|[[ ]l — 1] > €) < 6.

Proof. Define y = HDx. The goal is to first show that |HDzx|lo = O(y/log(d/d)/n) with proba-
bility 1 — §/2, then conditioned on this event, that (1 —¢) < [|£Sy[|2 < (1 + ¢) with probability
1-4/2.

For the first event, note
n 1 .
yi = (HDx)i =Y _ 05 - (—="ijx;) = (0,2),
=1 vd

where |v; ;| = 1 and 2° is the vector with (2%); = ﬁ%ﬁj%" Thus by Khintchine’s inequality

2log(4d/é )
V1, ]P’(|yl| > Oggl/)) < 2e—log(d/6) _ ﬁ
Thus by a union bound,
2log(4d/é , 2log(4d/é 0
B(lylle > 222000, g g > 28040 8

Now, let us condition on this event that ||y||2%, < 2log(4d/8)/n := 7/d. For i € [m], define
X;=d- yf By the Chernoff bound above,

m e m/T
=1

which is at most §/2 for m > =2 log(1/6)log(d/s). O

Remark 1. Note that the FJLT as analyzed above provides suboptimal m. If one desired optimal
m, one can instead use the embedding matrix II'Il,where II is the FJLT and II is, say, a dense
matrix with Rademacher entries having the optimal m’ = O(e~2log(1/d)) rows. The downside is
that the runtime to apply our embedding worsens by an additive m - m’. [AC09] slightly improved
this additive term (by an € multiplicative factor) by replacing the matrix S with a random sparse
matrix P.

Can a better analysis be given? Unfortunately not by much: the quadratic dependence log?(1/6)
needs to be there by an example of Eric Price. The bad case is = has 1/ d'/* on the first vd

coordinates, and imagine § < 9-Vd,



1.2 Analysis based on RIP

Here we give a different analysis, based on combining the main results of [KW11] and [RV08] which
use the method of chaining, as seen in the last lecture.

First we have to give a definition.

Definition 1. We say a matriz II € R™*" satisfies the (e, k)-restricted isometry property (or RIP
for short) if for all k-sparse vectors x of unit Euclidean norm,

l—e<|Mz|3<1+e.

Using the fact that the operator norm of a matrix ||M]| is equal to sup, ||z7 Mz||, it follows that
being (e, k)-RIP is equivalent to

sup |1 — (H(T))*H(T)H <&,
TCn||T|=k

where II(T) is the m x |T'| matrix obtained by restricting II to the columns in 7.

As we will see later in the course, this notion of RIP is useful for compressed sensing, which is
closely related to the heavy hitters problem. For now, we will just use it to obtain fast JL by
combining it with the following theorem of [KW11].

Theorem 3. There exists a universal constant C > 0 such that the following holds. Suppose A
satisfies (¢/C,k)-RIP for k > Clog(1/d), and let a« € {—1,1}" be chosen uniformly at random.
Then for any x € R™ of unit norm

P(|||ADyz||3 — 1| > €) < 6.

In other words, the probability distribution II = AD, over matrices, induced by «, satisfies the
distributional JL property.

We will not prove Theorem 3 here, but we will show that the matrix \/%S’H satisfies RIP with
positive probability for fairly small m. That is, there does some choice of few rows of a bounded

orthonormal system that gives RIP (though unfortunately we do not know which explicit set,
though see [BDF*11]).

A number of bounds on the best m to achieve RIP for sampling Fourier/Hadamard rows were
given, starting with the work of Candés and Tao [CT06]. Then subsequent works gave better
bounds [RV08, Boul4, HR16]. An analysis was also given for a related construction in [NPW14].
We will give the analysis of [RV08] since it is most similar to what we saw in the last lecture.

Recall for T' C R"™,

r(T) := Esup |(o, z)|.
7 zeT

Last lecture we did not include the absolute values, but it does not make much of a difference (the
Khintchine tail bound only differs by a factor of two). Also recall that we showed

r(T) S AT - [l2),



where for T" a set of vectors of at most unit || - || norm,

[eS) 1 1 0o . S ;
A= Y e BN ) = [ AN du = jof 30272 sup o =T
k=1 =1 z

This was the Dudley bound. Let us now show that for RIP, m = Q(¢ =2k log? n) suffices.

We will analyze a slightly different construction, just for ease of notation. Instead of sampling m
rows from H, we will simply keep each row with probability m/d, independently. Let n; be an
indicator for whether we keep row i. Also, let us define z! to equal the ith row of Vd - H, so
i e {-1,1}"

We let 8 = E, supjpi— [[1x — L3, uiz,fT) (zz-(T))TH and we will now get an upper bound for g in

terms of /3.

1 (1) (T)\T
E sup ||k g iz, (2

1 ) (Thr 1 () (T)\T
=E sup || E E {z( z; — g iz (2

1

< E — sup | Z u;ng)(zi(T))T - Z ,uz-zi(T)(zZ(T))T)H Jensen’s inequality
Bt T | 7| =k z
1

=— [E sup | Z o — ui)zi(T)(ng))TH By symmetrization over o
m p,p'so|7|=k P
2

<—EE sup || Z amizi(T)(zZ(T))TH Triangle inequality
mp o=k =
2

=—EE sup sup || Z o, z§T))2H Using the defn of operator norm of a matrix
m o 7=k zeR™ )
2

=—EE sup sup | Z oipiz, zZ(T))QH where D% = set of all k-sparse unit vectors in R?

meuoa |T|=k xEDg’k i€[d]

We let, T, = {p1{z, 21)%, ..., palz, 24)%, x € Dg’k} and (1)) = Esup.eg, [(0, 2)].
Dudley’s inequality gives us that r(7T") < A(T, ).
Let g(x) = (p1{x, z1), ..., pa(z, 24)) and g(y) is defined similarly.
We have that,
lg(2) = 9(w)ll> < max (5.2 = y)l - 2v/m- (8+ 12,

So we get that,

=AD" |- )



which implies that 82 — CRB — CR < 0.
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