
Sketching Algorithms for Big Data Fall 2017

Lecture 8 — September 26, 2017

Prof. Jelani Nelson Scribe: Sebastian Gehrmann

1 Overview

1. Continuous monitoring

2. Chaining

2 Continuous Monitoring

In previous lectures, we considered problems in which we observe a stream of data and then query
information about it. In continuous monitoring (CM), we consider data streams with continuous,
more involved querying. An an example, consider a router that sees a stream of IP’s and at every
point in time we are interested in what the heavy hitters are, how skewed the distribution is,
or whether we can detect trends and anomalies in the traffic. In addition, we are interested in
identifying when the answer to a query changes.

Dynamic Data Structures Refresher Generally, data structures (DS) are ways of laying out
data in memory. A dynamic DS is a structure that allows updates, opposed to a static structure
that does not allow them. A stream is an example of a dynamic DS (with the goal of sublinear
memory).

Problem Description formalize the CM problem, we consider an operation sequence that looks
like up1, q1, up2, q2, . . . , upn, qn for updates upi and queries qi. So far, we have considered Monte-
Carlo randomized algorithms (that fail with a certain probability). We typically want f(x) and
algorithmic output f̃ s.t. P(|f(x)− f̃ | > γ) < δ (*).

In CM, we have x(1), x(2), . . . , x(m), where x(t) is the frequency vector after the first t updates. An
algorithm should output f̃ (1), f̃ (2), . . . , f̃ (m) s.t. P(∃t∈[m]|f̃ (t) − f(x(t))| > γ(t)) < δ (**). We can

derive (**) from (*) by setting δ′ = δ
m , and then take the union bound oder all t ∈ [m]

However, by doing this, we blow up the space and query time by log n. The goal is to prevent this
from happening?

Approach Our hope is to define an event Et that algorithmically fails at time t (f̃ is a bad
estimate). We want to bound

P(

m∨
t=1

Et) =

m∑
t=1

P(Et|Ē1 ∧ Ē2 ∧ . . . ∧ Ēt−1)

1

So far, most algorithms we have seen are unlikely to fail at time t + 1 if they worked t times. An
example for this is the sketch by Alon, Matias, and Szegedy [1] for insertion-only streams (each
update does c← x+ 1 for some i). Let us assume that we only have one row. Then, we maintain
a random sign vector σ (as opposed to a matrix) that we maintain the dot-product with stream X
with. The intuition is now that the dot-product does not change much over time.

E|X| ≤ (EX2)
1
2︸ ︷︷ ︸

Jensen’s inequality

= (E(
t∑
i=1

σi)
2)

1
2 =
√
t

The trick here is to see that E(
t∑
i=1

σi)
2 is 0 for off-diagonals while the diagonals are ±1, which means

that the expectation is t.

Toy Example - Random Walk on a Line

For demonstration purposes, we are going to assume the following problem. We have a line (. . . , -4,
-3, -2, -1, 0, 1, 2, 3, 4, . . .). At each step we either take a step right or left With equal probability.
We run this for N time steps. The evolution can then be described by a row of the AMS sketch. If
we define

x(t) =

t︷ ︸︸ ︷
(1, 1, . . . , 1,

N−t︷ ︸︸ ︷
0, . . . , 0)

then at time t, we are at position 〈σ, x(t)〉, σ ∈ −1, 1N , and E|〈σ, x(N)〉| ≤
√
N (same as above).

We want to guarantee that we never leave this
√
N area:

E sup
t∈[N]

|〈σ, x(N)〉| = O(
√
N)

We have P(t) = x(t)√
N

, and want E supt |〈σ, x〉| = O(1)

We are going to prove this via chaining (which is not the usual way). For the proof we need the
Khintchine inequality:

∀x ∈ RN P(〈σ, x〉 > λ) < exp(
−λ2

δ‖x‖22
)

We can restate the dot product as s
∑

i σixi. Now, using Markov:

P(es
∑
i σixi > esλ) < esλEes

∑
i σixi

We can now calculate an upper bound on the last expectation in this equality:

2

Ees
∑
i σixi = E

∏
i

es
∑
i σixi

=
∏
i

Ees
∑
i σixi Linearity of expectations

=
∏
i

1

2
(esxi + e−sxi) Taylor exp. of e =

∞∑
k=1

zk

k

=
∏
i

cosh(sxi)

≤
∏
i

e
s2x2i

2

= e
s2‖x‖22
2−sλ choose s =

λ

‖x‖22

3 Chaining

Chaining is a method for computing bounds on E supz∈Z Z that leverages correlations across the
Z. For the lecture today, every Z looks like 〈σ, x〉 for some x. We want to bound

E supx∈T 〈σ, x〉
def
= r(T)

The reasoning is that if you bound this and the negative of this, we have a guarantee. If you have
two vectors x and y where |x− y| is close to 0, then 〈σ, x〉 is close to 〈σ, y〉.

3.1 Bounding r(t)

We are going to explore four ways of bounding r(T) that are increasingly tight. We will use the

property that r(T) . rad(T) ∗ lg
1
2 |T |.

(1) - Union Bound First, we normalize T so that all x ∈ T have ‖x‖22 ≤ 1 (we can later reverse
this). We can then use the fact that EZ ≤ E |Z| ≤

∫∞
0 P(|Z| > u)du

r(T) ≤
∫ ∞
0

P(sup
x∈T
〈σ, x〉 > u)du

We can then break up the integral and use the fact that the full integral over a distribution is 1.

∫ C
√

lg |T |

0
P(. . .)du︸ ︷︷ ︸

≤C
√

lg |T |

+

∫ ∞
C
√

lg |T |
P(∃x ∈ T |〈σ, x〉| > u)du

Since the left part is bounded, we can focus on the right part and union bound the tail down.

3

∫ ∞
C
√

lg |T |
P(∃x ∈ T |〈σ, x〉| > u)du ≤

∫ ∞
C
√

lg |T |

∑
x∈T

P(|〈σ, x〉| > u)du

≤ 2|T |
∫ ∞
C
√

lg |T |
e
−u2
2 du

= O(1)

We have found bounds for both terms, but we do not achieve the desired overall O(1) due to the
left term.

(2) - ε-net argument Let T ′ be the smallest ε-net of T under l2. For x ∈ T , let x′ ∈ T ′ be the
closest point to x in T ′. Then

E sup
x∈T
〈σ, x〉 = E sup

x∈T
〈σ, x′ + (x− x′)〉

≤ r(T ′) + E sup
x∈T
〈σ, x− x′〉

Here, the first term is ≤ lg
1
2 N (T, l2, ε). Using Cauchy-Schwarz and property of the ε-net, we can

bound the second term to ≤ ‖σ‖2‖x− x′‖2 ≤ ε
√
N . Now we choose the best ε:

r(T) ≤ inf
ε→0
{lg

1
2 N (T, l2, ε) + ε

√
N}

Remember that

x(t) =

t︷ ︸︸ ︷
(1, 1, . . . , 1,

N−t︷ ︸︸ ︷
0, . . . , 0)

Now we need to estimate N (T, l2, ε). We plug in the representation above to receive

(0,
(1, 0, . . . , 0)√

N
,
(1, 0, . . . , 0)√

N
, . . . ,

(1, 1, . . . , 1)√
N

)

For two time-points t > s, r(t) − r(s) =
√

t−s
N , since

‖r(t) − r(s)‖2 = ‖

t−s︷ ︸︸ ︷
(0, 0, 1, 1, . . . , 0, 1)√

N
‖2 =

√
t− s
N

This implies that N (T, l2, ε) ≤ 1
ε2

. If we plug this in above, we arrive at the same guarantee as in
the union-bound approach.

4

(3) - Dudley’s inequality For this approach, we assume that rad(T) ≤ 1. The idea is that
instead of stopping after the expansion x′ + (x− x′), we recurse and create more ε-nets. Let Sk be
a 1

2k
-net of T under l2 (the choice does not matter for this example, but it does for others). Let

x(k) be the closest point to x in Sk. Now the full expansion becomes

〈σ, x〉 = 〈σ, x(0) +
∞∑
k=1

x(k) − x(k−1)〉

Now we can use Dudley’s inequality [2] to compute an upper bound.

E sup
x∈T
〈σ, x〉 = E sup

x∈T
〈σ, x(0) +

∞∑
k=1

x(k) − x(k−1)〉

≤ E〈σ, 0〉︸ ︷︷ ︸
=0

+ E sup
x∈T

∞∑
k=1︸ ︷︷ ︸

switching makes worse

〈σ, x(k) − x(k−1)〉

≤
∞∑
k=1

E sup
x∈T
〈σ, x(k) − x(k−1)〉︸ ︷︷ ︸
norm≤ 3

2k
= 1

2k
+ 1

2k−1

.
∞∑
k=1

1

2k
lg

1
2 (N (T, l2,

1

2k
) · N (T, l2,

1

2k−1
))

.
∞∑
k=1

1

2k
lg

1
2 N (T, l2,

1

2k
) ← (*) Dudley’s inequality(

≤
∫ ∞
0

lg
1
2 N (T, l2, u)du

)

RWL: (*) .
∑∞

k=1

√
k

2k
= O(1)

This shows that the random walk on a line is bounded.

(4) - Last approach (not full proof) First, observe the following. Say T0 ≤ T1 ≤ T2 ≤ . . . ≤ T
is ”admissible” if (a) |T0| = 1, (b) |Tr| ≤ 22

r
. The claim now is that

(∗) ' inf
{Tr}∞r=0

∞∑
r=1

2
r
2︸︷︷︸

√
log of net in (3)

sup
x∈T

dl2(x, Tr)

The intuition for the sup is that it stays close to 1, then drops to ≤ .5. Altogether it gives you the
same bound as (3). The idea behind this proof is to find the best possible solution with a budget
of 22

r
.

5

Generic Chaining The technique of generic chaining can be traced back to Fernique [3]. The
idea is required to get from the random walk on a line example to streaming

r(T) . inf
{Tr}

sup
x∈T

∞∑
r=1

2
r
2dl2(x, Tr)

Now, x(t) refers to where the stream is after the first t updates. We claim that if we define

r(t) = x(t)

‖x(m)‖2
, then

∀u ∈ (0, 1) N ({r(t)}mt=1, l2, u) ≤ 1

u2

The proof for this is similar to the line using chaining and Dudley’s inequality. We can use this to
estimate l2 in a stream. Let the output at time t be f̃ (t).

Definition 1. We achieve weak tracking if ∀t ∈ [m]|f̃ (t) − ‖x(t)‖2| < ε‖x(m)‖2
Definition 2. We achieve strong tracking if ∀t ∈ [m]|f̃ (t) − ‖x(t)‖2| < ε‖x(t)‖2

We can use today’s techniques to show that the AMS sketch with k = O(1
ε2 lg 1

ε

rows provides weak

tracking (and it can be improved to k = O(1
ε2

with a different chaining argument by Braverman et
al. [4]).

Why is this relevant? AMS maintains yj = 〈σ(j), x〉 for j = 1, . . . , k. ‖x‖22 is estimated as∑
j y

2
j =

∑
j〈σ(j), x〉2. We can use the media of lg 1

d repetitions to get a low failure probability. We

can argue that 〈σ(j), x(t)−x(s)〉 is never big when we plug it into the equation from the line-walking
example:

〈σ(j), x(t2)〉 = 〈σ(j), x(t1) + (x(t2) − x(t1))〉
= 〈σ(j), x(t1)〉+ 〈σ(j), x(t2) − x(t1)〉

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Fre-
quency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Richard M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes. J. of Func. Anal., 1(3):290–330.

[3] Xavier Fernique. Regularité des trajectoires des fonctions aléatoires gaussiennes. Ecole dEté
de Probabilités de Saint-Flour, 1–96, 1975.

[4] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang,
David P. Woodruff. BPTree: An l2 Heavy Hitters Algorithm Using Constant Memory. Pro-
ceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, 361–376, 2017.

6

