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1 Overview

Today: Point query/Heavy hitter

1. l1 point query: query(i) = xi ± 1
k‖xtail(k)‖1

2. l1 heavy hitters: heavy() outputs L ∈ [n] such that
(1) |xi| > 1

k‖xtail(k)‖1 =⇒ i ∈ L ,“i is a 1
k -heavy hitter”

(2) |L| = O(k)

In this lecture we are going to cover few algorithms on point query and heavy hitters.

2 l1 point query

CountMin sketch [1] (See Figure 1)

1. Hashing h1, ..., hr : [n]→ [t], drawn independently from 2-wise family

2. Each grid cell is a counter we store in memory

3. update(i,4), Cj,hj(i) ← Cj,hj(i) +4

4. For now, assume ∀i, xi ≥ 0, (strict turnstile assumption)

5. query(i) : output x̃i = min1≤j≤r Cj,hj(i)

Analysis

1. Want to show

P(|x̃i − xi| >
1

k
· ‖xtail(k)‖1) < η

2. Suffices to show for fixed: j ∈ [r]

P(|Cj,hj(i) − xi| >
1

k
· ‖xtail(k)‖1) ≤

1

2

1



Figure 1: CountMin Sketch

3. Define event:

Ei = event that none of the top k entries in x collide with i under hj

Fi = event that the total tail(k) mass colliding with i under hj is ≤ 1

k
‖xtail(k)‖1

Claim 1. If Ei ∩ Fi holds, then |Cj , hj(i)− xi| ≤ 1
k‖xtail(k)‖1

Claim 2. If P(Ēi ∪ F̄i) ≤ 1
2 , where P(Ēi ∪ F̄i) ≤ P(Ēi) + P(F̄i)

Proof. Note that t=4k

For Ēi :

Let βq =

{
1 , if hj(q) = hj(i)

0 , otherwise

Phj(Ēi) = Phj (
∑

q 6=i,q∈head(k)

βq ≥ 1) ≤ E(
∑
βq)

1
≤ 1

4
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For F̄i :

Phj (F̄i) = Phj (Total tail mass colliding with i >
‖xtail(k)‖1

k
)

≤ E(Total tail mass colliding with i)
‖xtail(k)‖1

k

=

E(
∑

q 6=i,q∈tail(k)
xq · βq)

‖xtail(k)‖1
k

≤
‖xtail(k)‖1

t
‖xtail(k)‖1

k

=
k

t
=

1
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Point Query

1. Idea: query(i) for each i then return the i with top k |x̃i| values.

2. One issue: (Let’s define Err(k) = 1
k‖xtail(k)‖1)

We have xi = Err(k) , maybe x̃i = xi (no error). And there is a xi′ = 1
1.9 ·Err(k) , and may

have error x̃i = xi +Err(k).Therefore, we are going to think that xi′ > xi, although it is not
true. So, below we are going to show how to fix this issue.

Fix

1. Run Point Query structure with k′ = 4k.

2. Return L = top 3k indices.

3. Set η = δ
n , n is the length of vector x

Claim 3. P(L satisfies the true top 3k indices) ≥ 1− δ

Proof. P(∃ i such that query(i) fails) < η · n = δ , where n is union bound

Remark

1. A true 1
k -Heavy Hitter appears as ≥ truevalue− 1

4k ≥
3
4 ·

1
k

2. For i′ to look bigger, |xi′ | hard to be ≥ 1
2k , so 1

2k + 1
4k ≥

3
4 ·

1
k
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3. # indices ≥ 1
2k · ‖xtail(k)‖1 is ≤ 3k

Comparison Chart

Figure 2: Comparison Chart

3 l2 - Heavy Hitter / Point Query

Solved by Count Sketch [2]. Structure similar to Figure 1.

1. σ1, · · · , σr (2-wise) , [n]→ {−1, 1}

2. update(i,4), Cj,hj(i) ← Cj,hj(i) +4, where 4 = σj(i) · 4̂

3. query(i) : output x̃i = median
L≤j≤r

σj(i) · Cj,hj(i)

Claim 4. P(|x̃i(j)− xi| > 1√
k
· ‖xtail(k)‖2) < 1

3 , where Errx(k) = 1√
k
· ‖xtail(k)‖2

Proof.

P(|x̃i(j)− xi|2 > Err22(k)) <
E(σj(i) · Cj,hj(i) − xi)2

1
k‖xtail(k)‖

2
2

<
1

3

4 Insertion only

l1
1
k
−Heavy Hitter

For more details, you can look at paper [3]. We use the following example to illustrate the idea of
identifying a heavy hitter. Suppose that we have one counter associated with the candidate HH
index. If xi of the stream comes, then the counter is incremented when the i matches with HH.
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Otherwise, the counter associated with HH is decremented. If the counter is zero, we reset the
candidate HH with the incoming element.

For example, suppose that the input stream is {2, 1, 1}. So 2 comes first and 2 will become the
candidate HH which sets the counter to 1. The next element decreases the counter back to 0 (since
1 does not equal to 2). Finally, when the second 1 comes in, the candidate HH is reset to 1 (with
counter value 1).

l2−Heavy Hitter in insertion only

Refer to the paper [5], the algorithm BPTree for l2 heavy hitters in insertion-only streams can
achieves O(ε−2 log ε−1) words of memory and O(log ε−1) update time, which is the optimal depen-
dence on n and m.

The BPTree algorithm runs a series of θ(log n) rounds where the goal of each round is to learn one
bit of the identity of Heavy Hitter. Let us use the case of the super heavy hitter for illustrating
how BPTree works.

C-super heavy: x2H > C ·
∑
j 6=i

x2j

We have C0 and C1, are used for keeping the tracks. Learning the super heavy item (H) is done
bit-by-bit. When an item comes, the first bit of the item is checked. If it is a 0, then it is send to
C0 to do a dot product with random ±1 vector. Run this for a while, what we are going to expect
is that the C corresponding to the super heavy item is bigger, because the item is super heavy. So
we shall assume the first bit is 1 if C1 is big. Based on this, bit by bit identification can be done.
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