
Sketching Algorithms for Big Data Fall 2017

Lecture 6 — September 19, 2017

Prof. Jelani Nelson Scribe: Demi Guo

1 Overview

1. Wrap up JL Lower bound

2. New Topic: Heavy Hitters (in streams)

2 JL Lower bound Optimality

Let’s first recap what we talked about last time.

2.1 Definition

Theorem 1 (JL Lemma). Let X ⊂ Rd be any set of size n, and let ε ∈ (0, 1/2) be arbitrary. Then
there exists a map f : X → Rm for some m = O(ε−2 lg n) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ ‖x− y‖22

In this lecture, we want to prove the optimality of that lower bound. In last lecture, we used lecture
3 to prove such lower bound O(ε−2 lg n) can be achieved. Now, we only need to prove that m must
be greater or equal than O(ε−2 lg n).[2]. (note that our lecture is actualy based on the newer version
of the paper which is not published)

2.2 Intuition

Here, we give a high level introduction of the main ideas in our proof. The proof goes via a counting
argument. More specifically, we construct a large family P = {P1, P2, · · · } of very different sets of
n points in Rd. We then assume all point sets in P can be embedded into Rm while preserving all
pairwise distances to within (1 + ε). Letting f1(P1), f2(P2), · · · , denote the embedded poitn sets,
we then argue that our choice of P ensures that any two fi(Pi) and fj(Pj) must be very differ-
ent. If m is too low, this is impossible as there are not enough sufficiently different point sets in Rm.

2.3 Encoding Argument

Last time, we defined how point sets P are chosen as follows: Let e1, e2, · · · , ed denote the standard
unit vectors Rd. For now, assume that d = n/lg(1/ε)) and ε ∈ (0, 1). For any set S ⊂ [d] of size

1

k, where k = ε−2/c2
0, define a vector yS =

∑
j∈S ej/

√
k. Here, c0 is a sufficiently large constant.

Let Q = n − d − 1. For every choice of Q sets S1, · · ·SQ ⊂ [d] of k indices each, we add a point
set P to P. The point set P is simply {0, e1, · · · , ed, yS1 , · · · , ySQ

}. This gives us a family P with

|P| =
(
d
k

)Q
Claim 2. Given that it is possible to embed every point set in P into Rm while perserving pairwise
distances to within (1 + ε). We can then encode every point set into a big string of length O(nm).
Moreover, the encoding is injective: namely, the encoding guarantees that Pi can be uniquely recov-
ered from the encoding.

Proving the claim is sufficient since then we will have |P| =
(
d
k

)Q ≤ 2O(nm), which can be simplified
to m = Ω(ε−2 lg n) when ε > 1/n0.4999.
Thus, now we only need to find such an encoding algorithm, as we mentioned last time.

2.4 Encoding Method

(Disclaimer: In following proof, sometimes, the constant factor might not be exact, but it won’t
affect the correctness of the proof, since we can ignore constant factor in complexity analysis).
Before we go into encoding method, let’s first take a look at the embedded norm and dot product.
First, it’s easy to see that ‖ei‖ = 1 ≤ 1 and ‖yS‖ ≤ k(1/

√
k)2 = 1. Now, for point set P, and it’s

corresponding mapping f that satisfies the JL-property. We have following two claims:

Claim 3. f preserve norms of the vectors x ∈ P to within (1 + ε).

Proof.

(1−ε)‖x‖22 = (1−ε)‖x−0‖22 ≤ ‖f(x)−f(0)‖22 = ‖f(x)‖22 = ‖f(x)−f(0)‖22 ≤ (1+ε)‖x−0‖22 = (1+ε)‖x‖22

Claim 4. f must preserve inner products 〈ej , yS〉 up to an additive of O(ε).

Proof.

‖f(ej)− f(yS)‖22 = ‖f(ej)‖22 + ‖f(yS)‖22 − 2〈f(ej), f(yS)〉 ⇒ (1)

2〈f(ej), f(yS)〉 ∈ (1± ε)‖ej‖22 + (1± ε)‖yS‖22 − (1± ε)‖ej − yS‖22 ⇒ (2)

2〈f(ej), f(yS)〉 ∈ 2〈ej , yS ± ε(‖ej‖22 + ‖yS‖22 + ‖ej − yS‖22)⇒ (3)

〈f(ej), f(yS)〉 ∈ 〈ej , yS〉 ± 4ε (4)

This means that after applying f, there remains a gap of (c0 − 8)ε = Ω(ε) between 〈f(ej), f(yS)〉
depending on whetehr or not j ∈ S. With this observation, we are ready to find the first encoding
method.

2

2.4.1 Basic Method

We can encode Pi = 〈0, e1, · · · , yS1 , · · · 〉 with 〈fi(0), fi(e1), · · · , fi(yS1), · · · 〉. This encoding method
is injective since we can decode Pi by decoding all the original S1, · · · , SQ using following property:

〈ej , yS〉 = 0 if j 6∈ S (5)

and 〈ej , yS〉 = c0ε if j ∈ S (6)

Since 〈fi(ej), fi(yS)〉 is (1 + ε) approximation of 〈ej , yS〉, there will still be a gap (e.g. 2c′ε for
some constant c’) depending whether j is in S. Thus, by calculating all pairs of ej and Sz and
〈fi(ej), fi(ySz)〉, we will know whether j is in Sz, and recover Sz ∀z.
However, this basic method doesn’t work, because we can’t encode into O(nm) bits: each fi(x)
∀x ∈ Pi is a real number, which will cost ∞ bits to encode.

2.4.2 Fix 1

The idea is that we approximate fi(x) to some finite points, and claim that we can still use
approximate fi(X) to recover Pi use a similar strategy.
First, we know that ∀j, ‖fi(ej)‖, ‖fi(ySj)‖ ≤ 1 + ε. If we denote Bm

∞ as a unit ball in dimension
space under l∞ norm. Then, it’s obvious that, ∀j. fi(ej) and fi(ySj) ∈ (1 + ε)Bm

∞.
Let’s approximate all fi(ej) and fi(ySj) to a multiple of γ (each dimension’s coordinate is a multiple

of γ). Denote those approximations as f̂i.
We claim we can still recover Pi using the approximate fi. This is because 〈â, b̂〉 is within (1 + ε)
of 〈a, b〉 for γ = ε√

m
:

〈â, b̂〉 =
∑
i

âib̂i (7)

=

m∑
i=1

(a± γ)(b± γ) (8)

= 〈a, b〉 ±
∑
i

γ(|ai|+ |bi|) + γ2m (9)

= 〈a, b〉 ± γ(‖a‖1 + ‖b‖1) + γ2m (10)

= 〈a, b〉 ± γ
√
m(‖a‖2 + ‖b‖2)± γ2m (11)

= 〈a, b〉 ± γ
√
mc′(1 + ε)± γ2m (12)

= 〈a, b〉 ± c′ε(1 + ε)± ε2 (13)

Thus, 〈f̂i(ej), f̂i(ySz)〉 is (1 + ε) approximation of 〈ej , ySz〉. Thus, there’s still a gap between the
case j is not in Sz and j is in Sz.

Now, since there are N1 = (1+ε
γ)m = ((1+ε)

√
m)

ε)m such points (multiple of γ) in (1 + ε)Bm
∞, solving(

d
k

)Q ≤ N1, we get a bound m = Ω(1
ε2

lgn
lgm

ε
), which is still not good enough. (In other words, we get

an encoding algorithm with O(lgN1) bits instead of O(nm) bits)

3

2.4.3 Fix 2

The problem with Fix 1 is that there are still a lot of multiples of γ. We want approximate fi using
a smaller set of points.

We first claim that if f̂i is still a (1 + ε) approximation of fi in l2 norm, then we can use a similar
strategy to recover Pi:
We have ‖f̂i(ej)−fi(ej)‖22 ≤ ε and ‖f̂i(ySl

)−fi(ySl
)‖22 ≤ ε , then by triangle inequality, the distance

‖f̂i(ej) − f̂i(ySl
)‖22 is also a (1 + O(ε)) approximation to ‖ej − ySz‖. This follows that the inner

products will be preserved. Thus, like Fix 1 and basic method, we can still use the inner product
〈f̂i(ej), f̂i(ySz)〉 to recover whether j is in Sz.

Similar to Fix 1, since ∀j, ‖fi(ej)‖, ‖fi(ySj)‖ ≤ 1 + ε, we know ∀j, fi(ej), fi(ySj) ∈ (1 + ε)Bm
2

(where Bm
2 is a unit ball in m dimensional space under l2 norm).

Consider a minimum cover C of (1 + ε)Bm
2 using εBm

2 balls (minimum cover here means: a cover
with minimized |C|). Then for each fi(x) ∈ (1 + ε)Bm

2 we can find the εBm
2 ball B0 in the cover,

and approximate fi(x) using the center of the ball. Since the ball has size ε, we know it’s still a
(1 + ε) approximation of fi(x). In this way, instead of encoding fi(x) we can encode the index of
the εBm

2 ball containing fi(x), and approximate it using the center of that ball. We thus get an
encoding algorithm with lg(|C|) bits.

Now, the question is, what is |C|? Let’s first take a look at the following 2 lemmas.

Lemma 5. Let K be a convex body, and P (K, α2K) be any maximal packing of K using α
2K. (A

maximal packing of A using B = a bunch of disjoint bodies B with centers inside A, s.t. you can’t
add more body B anymore). Then, P (K, α2K) ≤ (1 + 2

α)dim(K).

Proof. (If it’s confusing that we are using ”convex” body, you can think of K as a unit ball, and
α
2K as a ball with radius α

2)
Since the centers of all α

2K bodies are contained in K body. Thus, all α
2Kbodies will be fully

contained in a (1 + α
2)K body. Since all α

2K bodies are disjoint. We have V OL(α2K)P (K, α2K) ≤
V OL((1 + α

2)K, which gives us the desired result: P (K, α2K) ≤ (1 + 2
α)dim(K).

Lemma 6. We want to cover K using some copies of αK (a smaller scaled version of K). Define
N(K, αK) as the minimum number of copies of αK we need to cover body K. Then, N(K, αK) ≤
P (K, α2K).

Proof. For any maximal packing of K using α
2K bodies, we can double the size of the bodies to αK.

Then, those bodies will form a cover of K:
If there is a point p in K not covered. Then, p is at least α = α

2 + α
2 away from all centers of the

bodies. Then, if we draw a α
2K body centered at p, it won’t overlap with any other bodies. Thus,

it implies that P is not a maximal packing, which contradicts with the statement. Thus, all points
are covered.
Thus, it follows that N(K, αK) ≤ P (K, α2K).

Combining Lemma 5 and Lemma 6, we have:

4

Corollary 7. N(K, αK) ≤ (1 + 2
α)dim(K)

Back to our original problem (in Fix 2), we have K = (1+ε)Bm
2 , dim(K) = m, and α = ε

1+ε . Thus,

we can get a bound for |C| = 2Ω(m lg(1/ε)). Tge lg(1/ε) factor loss leaves us with a lower bound
on m of no more than m = Ω(ε−2 lg(ε2n/ lg(1/ε))/ lg(1/ε)), roughly recovering the lower bound of
Alon [1] by a different argument.

2.4.4 Fix 3

Now, let’s consider our final fix. To encode f̂i(ej), we can use the same method in Fix2:
Observe that we chose d = n/ lg(1/ε). Thus we can spend up to O(m lg(1/ε)) bits encoding each
fi(ej)’s. Thus, we simply encode approximations f̂i(ej) by specifying indices into a covering C2 of
(1 + ε)Bm

2 by εBm
2 as outlined above.

For the fi(ySz)’s, we have to be more careful. First, we define the d × m matrix A having the
f̂i(ej) as rows. Note that this matrix can be reconstructed from the part of encoding specifying

the f̂i(ej)’s. Now observe that the j′th coordinate of Afi(ySz is within O(ε) of 〈ej , ySz〉. The
coordinates of Afi(ySz) thus determine Sz. We therefore seek to encode Afi(ySz) efficiently.

To encode Afi(ySz), first note that ‖Afi(ySz)‖∞ = O(ε), because it’s within O(ε) of 〈ej , ySz〉 =
O(ε). If W denotes the ≤ m dimensional subspace spanned by the column of A, we also have that
Afi(ySz) ∈ W . Now define the convex body T = Bd

∞ ∩W , where Bd
∞ denote the l∞ unit cube in

Rd. Then, Afi(ySz) ∈ O(ε)T .

Now, recall that there is a gap of Ω(ε) between inner products 〈f̂i(ej), f̂i(ySz)〉 depending on whether
j ∈ Sz or not. Letting c1 be a constant such that the gap is more than 2c1ε, this implies that if we
approximate Afi(ySz) by a point f̂i(ySz) such that (f̂i(ySz)−Afi(ySz)) ∈ c1ε ·Bd

∞, then the coordi-
nates of f̂i(ySz) still uniquely determine the indices j ∈ Sz. Exploiting that Afi(ySz) ∈ O(ε)Tm we
therefore create a covering C∞ of O(ε)T by copies of c1εT and approximate Afi(ySz) by the center
of the convex body in C∞ containing it (just like Fix 2). Applying Corollary 7, we have α = c1 ,
K = εT , and dim(εT) ≤ m (since it is contained in W). Thus, |C∞| is bounded by |C∞| = 2O(m).
Specifying indices into C∞ thus costs only O(m) bits to encode Afi(ySz). Encoding for all z, we
only need to use in total O(nm) bits.

To summarize, the decoding process looks like following:
We have a fixed covering C2 of the fixed ball (1 + ε)Bm

2 (centered at origin). Note that we don’t
need any encoding to ”decode” C2, because all conditions is fixed if we use some constant bits to
encode m, ε etc.
Let aj be the index of the ball in the covering that contains fi(ej). We can find that ball in the
fixed covering C2, and approximate fi(ej) using the center of that ball.

Using those f̂i(ej), we can recover matrix A, and find the covering C∞ of A. Note that we only
need A to decode this covering. Now, for each Afi(ySz), we have the encoded index of the ball in
C∞. Using the decoded covering C∞, we can find the center of that ball, and use it to approximate
Afi(ySz). Now, by considering each bit j in Afi(ySz), and compare them with certain threshold
(e.g. c1ε), we know if j is in Sz. In this way, we can decode all Sz and thus Pi.

5

3 Heavy Hitters

We have following definitions:

1. `1 point query: query(i) = xi ± ε‖x‖1

2. `1 heavy hitters: query() return L ∈ [n] s.t. :

(a) |xi| > ε‖x‖1 =⇒ i ∈ L
(b) |L| = O(1/ε)

Note that the number of ε-heavy hitters, i.e. those i satisfying |xi| > ε‖x‖1 → i ∈ L, is less than
1/ε, so the second requirement is just saying that L should not be more than a constant factor
larger than this maximum possible size.

The heavy hitters problem shows up, for example, when we are trying to find frequent items in a
data stream. In the turnstile model with deletions, if we interpret updates in one time period T
as decrementing frequencies and in some other disjoint time interval T ′ as increasing frequencies,
then note that x during a query will be the difference of two frequencies. Then a heavy hitter
corresponds to an index i that changed significantly in frequency, and thus turnstile heavy hitters
algorithms can also be used to detect large frequency changes.

We will also study the notion of point query with a tail guarantee, and “ε-tail heavy hitters”.

1. `1 point query with a tail guarantee: query(i) = xi ± ε‖x[1/ε]
‖1

2. `1 tail heavy hitters: query() return L ∈ [n] s.t. :

(a) |xi| > ε‖x
[1/ε]
‖1 =⇒ i ∈ L

(b) |L| = O(1/ε)

Here we use x[k] to denote the vector x after zeroing out its largest k entries in magnitude. Note

that the number of i such that |xi| > ε‖x
[[]k]
‖1 is at most k + 1/ε, since other than the set S ⊂ [n]

of top k entries in x, the number of other i satisfying xi > ε
∑

j /∈S |xj | must be less than 1/ε.

We will see next lecture that `1 point query with ε error (and in fact even with the tail guarantee)
can be achieved using space O(ε−1 log(1/δ)) words to have failure probability δ per query. We will
also show how to achieve space O(ε−1 log n) words to solve ε-tail heavy hitters in `1.

References

[1] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Fre-
quency Moments. Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC), pp. 20–29, 1996.

[2] Kasper Larsen, Jelani Nelson. Optimality of the Johnson-Lindenstrauss Lemma. Proceedings
of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS) 2017.

6

	Overview
	JL Lower bound Optimality
	Definition
	Intuition
	Encoding Argument
	Encoding Method
	Basic Method
	Fix 1
	Fix 2
	Fix 3

	Heavy Hitters

