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1 Overview

In the past two lectures we discussed algorithms for estimating the L2. Specifically, the Alon-
Matias-Szeged (AMS) algorithm [2] and the Johnson-Lindenstrauss (JL) lemma [1], as well as a
generalization of the JL lemma to the Lp norm for p ∈ (0, 2], and for p > 2 in the case of strictly
positive incremental updates.

In this lecture we discuss various lower bounds for the both the Distributional JL (DJL) lemma
and the JL lemma. Particularly, the history of the lower bound computation for these two versions,
as well as proofs of the original lower bound by Johnson-Lindenstraus [1], a better lower bound by
Alon [3], the optimal lower bound for DJL by Kane, Meka, and Nelson [7], and an optimal lower
bound for JL under a condition by Larsen and Nelson [8], which we will finish on the next lecture.

2 Restating the problem

Two lectures ago professor Indyk talked about this lemma at MIT when he talked about L2 norm
estimation in data streams. Using the AMS sketch we could provide a 1 + ε approximation of the
L2, which worked by essentially giving an embedding into L2. Professor Indyk showed that if we
look at the squared dot product between any row and x, its expectation will be the squared norm
of x. So if we average Θ( 1

ε2
) estimators, as in previous lectures, then we get a 1 + ε-approximation.

Therefore we can see that AMS essentially maps x into Πx, where Π is a random-sign matrix with
n columns and Θ( 1

ε2
) rows, with each cell equal to ±1. We then normalize the matrix by 1√

m
(m

is the number of estimators, so the number of rows in Π), so now we can we estimate the norm of
x by estimating the norm of Πx.

2.1 Distributional JL Lemma

The Distributional JL lemma [1], as we saw it last time, is an alternative statement of the original
statement of the JL lemma. it states that ∀ ε, δ ∈ (0, 1

2) ∃ Dε,δ on Rm×d such that ∀u ∈ Rd we have
that

PΠ∼Dε,δ(‖Πu‖2 /∈ [1− ε, 1 + ε] · ‖u‖2) < δ

where m = O( 1
ε2

log 1
δ ).

An example of a distribution Dε,δ is matrices comprised of i.i.d. Gaussian entries.

1



2.2 JL Lemma

The JL lemma [1] states that ∀ n, d > 1, ∀ ε ∈ (0, 1
2), ∀ X ⊆ Rd, |X| = n ∃ f : X → Rm,m =

O( 1
ε2

log n) such that

∀x, y ∈ X, (1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2

This means that f is a near-isometry on X.

The JL lemma can be obtained by the DJL by setting δ < 1
n2 and u = x− y We can prove that JL

follows directly from DJL because we can set δ < 1
n2 , u = x − y, so by choosing f(x) = Πx, then

with high probability ‖Πu‖2 ∈ [1− ε, 1 + ε] · ‖u‖2. Then by union bound over all such pairs (which
are

(
n
2

)
< n2 in number) we get the desired result.

Can we achieve the same guarantee with a lower m?

3 History of lower bounds

In 2011 it was resolved that the DJL lower bound is optimal [7]. Observe that the derivation of
JL from DJL does not imply that the lower bound of m will be the same for JL, as we can choose
the function f , and for a non-linear map we might be able to achieve a lower bound. Only within
the last year was it proved that the JL lower bound is also optimal. It turns out that the way to
achieve the lower bound for JL is to actually choose a random linear map (i.i.d from a Gaussian
distribution), so being able to “look” into the point set does not change anything.

• In the original JL paper by Johnson and Lindenstrauss [1], they show that there exist n+ 1
points in Rn such that any JL map needs m & logn

log(2c+1) . This lower bound is achievable for

large C, as shown by Indyk and Naor [4].

• Alon [3] showed that the for same point set that JL analyzed in their paper, we can achieve a
better lower bound: m & min{n, 1

ε2
logn

log 1
ε

} Obviously we cannot get a lower bound better than

n, because the points live in an n-dimensional space. This was the best lower bound known
until within the last year.

• In 2011 there were two works, one by Jayram and Woodruff [6] and one by Kane, Meka
and Nelson [7] which show that for DJL m & min{d, 1

ε2
log 1

δ}. This is optimal, because one
distribution that always works is the distribution that always returns the identity matrix, so
that gives m = d, and the Gaussian distribution, which gives 1

ε2
logn

log 1
ε

, so their minimum is the

optimal lower bound (as both are achievable).

• After that, a paper by Larsen and Nelson [8] showed that ∀ε, n, there exist O(n3) points in
Rn such that any linear map needs m & min{n, 1

ε2
log n}.

Note that there are non-linear maps for the point sets used in the above paper that do better
than JL.

• Larsen and Nelson in 2016 [9] showed that ∀ε ∈ (0, 1
2), n, d, with ε > log0.5 n

min(n,d) , there exists a

hard point set in Rd such that m & 1
ε2

log n, even if the map is non-linear.

In this paper it was conjectured that ∀ n, d, ε the optimal bound ism = Θ(min{n, d, 1
ε2

log(ε2n)})
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• Alon and Klartag in 2017 [10] showed the lower bound of the conjecture above.

Regarding results in Lp, there is a theorem by Johnson and Naor [5] which shows that any norm
space that has this kind of guarantee is very close to L2 in some precise sense. Specifically for every
finite dimensional subspace of that norm space there is a low-distortion embedding to L2.

3.1 Proof of the original JL lower bound [1]

First we decide on the hard point set X = {0, e1, . . . , en} ⊆ Rn

Claim 1. If we embed these points into m-dimensional space and you preserve distances up to a
factor of c, then our target dimension has to be a factor of logn

log(2c+1) .

Proof. We will assume that the embedding maps zero to zero, as we can translate without changing
any istances. We want to preserve pairwise distances, and particularly distances of points to zero.
They used to have distance 1 to zero and distance

√
2 to each other. Now the distance to zero is

in [1, c], and the distance to each other will be in [
√

2, c
√

2]. Let ẽi be the images of the eis under
the current embedding. Now, for each one of these points we are going to consider a ball around
it, with radius 1

2 .

Observe that the balls around the ẽi are disjoint. Suppose that two of them overlap, the points will
have distance at most one (as the radii of the balls are 1

2 , which is a contradiction since they need

to have distance of at least
√

2 > 1.

Also all balls lie in a radius (C + 1
2)-ball around zero.

Since the balls are disjoint, the sum of their volumes is bounded by the volume of the big ball. This

means that n · volm(B(1
2)) ≤ volm(B(C + 1

2)). This implies that n ≤ volm(B(c+ 1
2

))

volm(B( 1
2

))
= (2c+ 1)m.

By taking log and dividing by log(2c+ 1), we trivially get that m ≥ logn
log(2c+1) .

3.2 Proof of the lower bound by Alon [3]

We will be using the same point set X = {0, e1, . . . , en} ⊆ Rn. Also, as before, we will be assuming
that zero gets mapped to zero.

Let B be an n×m matrix whose columns are equal to f(ei) ∈ Rm. Also, the columns have norm
1± ε (as we want to preserve the distance to zero).

We get that:
‖ei − ej‖22 = ‖ei‖22 + ‖ej‖22 − 2〈e1, e2〉 = 2− 2〈e1, e2〉

and:

‖f(ei)− f(ej)‖22 = ‖f(ei)‖22 + ‖f(ej)‖22 − 2〈f(ei), f(ej)

= (1± ε) + (1± ε)− 2〈f(ei), f(ej)〉 ⇒
‖ei − ej‖22 +O(ε) = 2− 2〈f(ei), f(ej)〉+O(ε)⇒

〈ei, ej〉 = 〈f(ei), f(ej)〉 ±O(ε)
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If f preserves distances then it also approximately preserves dot products, as it is an L2 embedding.
Therefore all the dot products between the columns of B are approximately ε.

B is ε-incoherent matrix (after dividing the columns by their norms). This means that the columns
have unit norm, and for all columns u, v we have that |〈u, v〉| ≤ ε.

Now define A = BTB ∈ Rn×n. All of its diagonal entries equal to 1 and all non-diagonal elements
are close to zero (±ε). So A is a near-identity matrix.

Claim 2. ε < 1√
n
⇒ rank(A) = Ω(n).

Proof. (outline) The trace of A is n. The Fubini norm squared of A (which is equal to the norm of
the vector that we get if we transform A to a vector of length n2) is at most n + εn2. A is a real
symmetric matrix, so by the spectral theorem it has r real eigenvalues, where r = rank(A), so the
trace will be equal to n. The sum of the squares of the eigenvalues is given by the Fubini norm, so
we can relate those two sums using Cauchy-Schwartz to get a lower bound.

Observe that if you show a lower bound on the rank of A, this gives us a lower bound on m because
rank(A) = rank(B) ≤ m.

To get the lower bound for any ε (not necessarily less than 1√
n

), we define A(k) with A(k)i,j = Aki,j ,

and we take k big enough so that εk will be arbitrarily small. It turns out that the rank of A(k)
does not become much larger, and it is lower bounded, so at the end we get a lower bound for any
ε.

3.3 KMN 2011 – Optimal DJL lower bound proof [7]

D is a distribution over Rm×n such that for all u we have that PΠ∼D(Π fails to preserve u) < δ.
The goal is to do this with m as small as possible.

As it holds for all u, it will also hold for a random u, so we have that Pu∼UPΠ∼D(Π fails to preserve u) <
δ ⇒ PΠ∼DPu∼U (Π fails to preserve u) < δ.

We get that ∃ Π such that Pu∼U (Π fails to preserve u) < δ, because otherwise every Π would be
above average (i.e. we wouldn’t get the probabilty above).

It remains to show that if we choose U to be uniform on a sphere (so if u is a random point on the
sphere), because there is no matrix that can preserve a random point on the sphere with probability
δ unless the number of rows of that matrix are at least equal to the proven lower bound. This part
will not be shown in class.

3.4 LN 2016 – JL Optimal lower bound proof [9]

3.4.1 Overview

The technique that we will follow will be to construct an encoding (injection) argument and use the
pigeonhole principle. In particular this is going to be an existence proof, in which we will show that

4



there exists a hard point-set X with the desired properties (unlike proofs so far which explicitly
constructed it).

Let X be a collection of n-size subsets of Rd. If for every X ∈ X there exists a (1 + ε)-distortion
embedding fX : X → Rm, we will show that there exists an encoding (injection) function Enc:

X → {0, 1}cnm. This implies that 2cnm ≥ |X | ⇒ m & log |X |
n .

3.4.2 Outline

We want to construct an X that is as big as possible (as this gets us a better lower bound), and
show how the encoding works (prove that it is an injection). First, we will construct a collection
X of ordered multisets of size n, so every point set is a tuple of points, which means that the order
matters. Note that here we are slightly changing the definition given above.

We will proceed by contradiction. Suppose that every point-set is easy, i.e. it has an embedding
into dimension m. In particular every point-set in X has an embedding into dimension m, say fX .
We will use the collection of embeddings, to define an encoder taking a point set to a bit-stream of
length cnm. We will show that this encoder is an injection, which would mean that the right side
would be bigger than the left side, which would mean that cnm ≥ |X | ⇒ m ≥ log |X |

n .

Set k = c2

ε2
, define for S ⊆ [d], |S| = k, yS = 1√

k

∑
i∈S ei, so yS is the indicator vector of the

set S, normalized so that it has unit norm. We are going to consider point sets of the form
X = (0, e1, e2, . . . , ed, yS1 , . . . , ySn−d−1

), so X is the collection of sets of this form.

For brevity we will solve this for a specific value of d. Set d = n
log 1

ε

.

Then |X | =
(
d
k

)n−d−1 ⇒ m &
(n−d−1) log (dk)

n & k log( dk ) & 1
ε2

log( ε2n
log 1

ε

) (by Stirling’s approximation).

It remains to show the existence of the encoding.

The rest of the proof will be shown next Tuesday.
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