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1 Overview

In the last lecture we studied two methods for estimating L2 norm of a stream. A stream of
update (i, 1) can be viewed as xi = xi + 1, i.e. increasing the respective bit in a count vector by
1. The algorithm maintains a linear sketch Rx, where R is a km random matrix. We then use low
dimensional L2 norm ||Rx||22 to estimate a high dimensional L2 norm ||x||22
In this lecture we will first introduce a third algorithm to estimate the L2 norm. The motivation
behind it is that unlike the previous two algorithms we have seen in the previous lecture, this third
algorithm can be easily generalized to Lp norm where 0 < p ≤ 2. In particular, we can use this
algorithm to estimate the L1 norm. Similar to the previous two algorithms, this algorithm also
uses polylogarithmic space. Next, we will discuss another algorithm for estimating Lp norm where
p ≥ 2. This algorithm only works for positive updates (such as increment by 1), and it does not

work for negative counting. The algorithm uses sampling instead of sketches and it uses O(km
1− 1

k

ε2
)

space for (1± ε)-approximation with constant probability

2 Another L2 norm estimation

The first step of this algorithm is exactly the same as the previous two algorithms discussed in the
previous lecture.

First, we use a linear sketch Rx = [Z1 · · ·Zk], where each entry of R has distribution N(0, 1), k =
O( 1

ε2
). Therefore, each of Zi has N(0, 1) distribution with variance

∑
i x

2
i = ||x||22. Alternatively,

we have Zi = ||x||2Gi , where Gi is drawn from N(0, 1).

Next, we need to choose an estimator to estimate ||x||22 from Z1, Z2, · · ·Zk. In the previous two
algorithms, we used Y = [Z2

1 + · · ·+ Z2
k ]/k to estimate ||x||22, but there are many other estimators

that we can potentially use. For example, we could instead use,

Y =
median[|Z1|, · · · , |Zk|]

median[|G|]

to estimate ||x||2 (G drawn from N(0, 1)). Here, median of an array A of numbers is the usual num-
ber in the middle of the sorted A, whereas median is the median of a random variable U if Pr[U ≤
median] = 0.5. The intuition here is that median[|Z1|, · · · , |Zk|] = ||x||2median[|G1|, · · · |Gk|]. For
large enough k, median[|G1|, · · · |Gk|] becomes close to median[|G|]. Next, we prove it formally.

Lemma 1: Let U1 · · ·Uk be i.i.d. real random variables chosen from any distribution having
continuous c.d.f. F and median M , i.e., F (t) = Pr[Ui < t] and F (M) = 1/2. Define U =
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median[U1, · · · , Uk]. Then, for some absolute constant C > 0,

Pr[F (U) ∈ (
1

2
− ε, 1

2
+ ε)] ≥ 1− e−Cε2k

Proof: Assume k is odd so that the median is well defined. Consider the events Ei : F (Ui) <
1
2−ε.

We have p = Pr[Ei] = 1
2 − ε. We can see that F (U) < 1

2 − ε if and only if at least k
2 of these events

hold. By Chernoff bound, the probability that at least k
2 of the events hold is at most e−Cε

2k.

Therefore, Pr[F (u) < 1
2 − ε] ≤ e−Cε

2k. The other side can be dealt with a similar manner. See
Figure 1 for a visualization of the proof.

Figure 1: Visualization of Lemma 1. The blue dots are a series of samples. The median of the
samples will be close to the true median (noted in the figure by the orange lines).

Lemma 2: Let F be the CDF of a random variable |G|, where G drawn from N(0, 1). There exists
a C ′ > 0 such that if for some z we have

F (z) ∈ (
1

2
− ε, 1

2
+ ε),

then
z = median(g)± C ′ε

Proof: omitted. Use Calculus.

Putting everything together, we have:

Theorem: If we use median estimator

Y =
median[|Z1|, · · · , |Zk|]

median[|g|]

where Zj =
∑

i rijxi, rij is chosen i.i.d. from N(0, 1), then we have

Y = ||x||2
[median(g)± C ′ε]

median[|g|]
= ||x||2(1± C ′′ε)
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with probability
1− e−Cε2k.

Note 1: the reason why we use Gaussian here is not because we need Gaussian for the proof of the
two Lemmas, but rather the property that we can divide Zi by Gi to estimate ||x||2.

Note 2: In general, we cannot use median to replace median of means. Consider the samples
[−1, 1,−1, 1,−1, 1 · · · ]. If we only use median, we will never get the true expectation 0. We cannot
use mean to replace median of means either. Consider the example of a heavy-tailed distribution.
Simply speaking, we use mean to reduce the variance, and we use median to amplify the probability.

3 Extending the median estimator to Lp

The key property of normal distribution that we used is: if U1, · · ·Uk are independent, and U is
normal distribution, then x1U1 + · · ·+ xmUm is distributed as

(|x1|p + · · ·+ |xm|p)
1
pU

Such distributions are called “p-stable” and exist for and p ∈ (0, 2].

For p = 1, we have Cauchy distribution. The density function is f(x) = 1
π(1+x2)

, CDF is F (z) =
arctan(z)

π + 1
2 . 1-stability: x1U1 + · · ·+ xmUm is distributed as (|x1|+ · · ·+ |xm|)U . The PDF and

CDF of Cauchy distirbution can be visualized in Figures 2 and 3.

Figure 2: PDF of Cauchy distribution

Figure 3: CDF of Cauchy distribution

Note that Cauchy distribution does not have the first or the second moment. However, the estimator
arguments we used in proving the algorithm can still go through. Therefore, we can generate random
Cauchy by choose a random u ∈ [0, 1] and computing F−1(u) to estimate L1 norm.
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Similarly, for L 1
2

norm, we can use Levy distribution. See Wikipedia.

When p 6= 1, 2, 12 , there is no closed form formula for density or CDF, and we are not clear where the
median is. Also, we are not clear what the derivative of CDF around the median is. Nevertheless,
we can use some hack to estimate. See [1] and [2]. For more information on p-stable distributions,
see this book.

So far, we have ignored randomness and discretization issues (but everything can be done using
O(log (m+n)) bit numbers). See [3] on how to fix this and get the optimal bounds.

4 Lp norm for p ≥ 2

Unfortunately, p-stable distributions do not exist with k > 2. We will introduce a new algorithm
for estimating Lk norm in this section. The algorithm only works for a stream. For a stream of
elements i1, · · · in, each i can be interpreted as xi = xi + 1. This algorithm only work for these

updates, not for decrements. The space this algorithm needs is O(m
1− 1

k

ε2
) for (1± ε)-approximation

with constant probability.

4.1 Lk norm estimation [4]

We will use notation Fk =
∑m

i=1 x
k
i = ||x||kk for frequency moment of the stream i1 · · · in. The first

algorithm we introduce has two passes:

Pass 1: Pick a stream element i = ij uniformly at random
Pass 2: Compute xi
Return Y = nxk−1i

Analysis: our estimator is Y = nxk−1i . The expectation of our estimator is E[Y ] =
∑

i
xi
n nx

k−1
i =∑

i x
k
i = Fk. The second moment (≥ variance) is E[Y 2] =

∑
i
xi
n n

2x2k−2i = n
∑

i x
2k−1
i = nF2k−1.

We claim that nF2k−1 ≤ m1− 1
k (Fk)

2. Therefore, by averaging over O(m
1− 1

k

ε2
) samples and using

Chebyshev bound will do the job.

Next we prove the above-mentioned claim: nF2k−1 ≤ m1− 1
k (Fk)

2

Proof:

nF2k−1

=n||x||2k−12k−1

≤n||x||2k−1k

=||x||1||x||2k−1k

≤m1− 1
k ||x||k||x||2k−1k

=m1− 1
k ||x||2kk

=m1− 1
kF 2

k

Now, we want to reduce our algorithm to only having one pass. However, such one-pass algorithm
cannot compute xi exactly. Instead we first pick i = ij uniformly at random from the stream.
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Then compute r = # occurrences of i in the suffix ij · · · in. We use r instead of xi in the estimator.
Clearly r ≤ xi, but we can see that E[r] = xi+1

2 , so intuitively things should work out up to a
constant factor.

There is an even better idea, which is to use Y ′ = n(rk−(r−1)k) as the estimator. The expectation
is

E[Y ′] = nE[(rk − (r − 1)k)]

= n
1

n

∑
i

xi∑
j=1

[
jk − (j − 1)k

]
=

∑
i

xki

To see the second moment, we first observe that Y ′ = n(rk − (r− 1)k) ≤ nkrk−1 ≤ kY . Therefore,

E[Y ′2] ≤ k2E[Y 2] ≤ k2m1− 1
kF 2

k (We can improve this to km1− 1
kF 2

k for integer k). Using these
two, we have proved the one pass algorithm for Fk (positive updates). The space requiremnet is

O(k
2m1− 1

k

ε2
) for (1± ε)-approximation.

Note 1: the algorithm in [4] only works for integer k. However, it is easy to adapt to any k > 1.

Note 2: m1− 1
k is not optimal, we can achieve m1− 2

k logO(1)(mn). See [5] and [6].

Note 3: The sampling is quite general. The empirical entropy, i.e.
∑

i
xi
n log

xi
n in polylog n space

[7].
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