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1 Overview

In the last lecture we talked about counting distinct elements in a stream. First we had an idealized
algorithm which uses hash function h : [n] → [0, 1] and inspects the minimum one. Then we
fixed the idealized algorithm to actual algorithm with pair-wise independent hash function. The
space we need in the final version of the algorithm we got is O( 1

ε2
log2 n log 1

δ ) And we know that
O( 1

ε2
log 1

δ + log n) is achievable and this also matches the lower bound.

This is the first lecture in MIT so in this lecture we reintroduce the data stream model. Then we
discussed about estimating L2 norm of a data stream. We introduced two methods for estimating
L2 norm: a) Alon-Matias-Szegedy (AMS) algorithm [1] b) Johnson-Lindenstrauss (JL) lemma [2].
The AMS algorithm is often appeared in textbook which is a very elegant and simple algorithm
while JL lemma is a very powerful tool which is widely used in designing big data algorithm.

2 Data Stream Model

We will not get into detail about introducing data stream model since it was done in first lecture
but we will outline some important features of this model.

The data stream model consider the situation that we continuously receive a stream of data, do
computation about it and answer queries about the stream of data we have seen. We can think of
the data stream as a tape passing through us. The size of the data is huge and we can only see
the data in this order so typically we can not access the data that is already passed away. The
tricky point of this model is that we can not remember all the data we have seen so far since we
are dealing with big data problem but still we want to do something meaningful and answer the
queries within some accuracy with limited memory.

We denote the data stream by i1, i2, . . . in and each xi ∈ [m]. We assume n and m are known and
we can use that to set up the parameter of the algorithm. Our storage is sub-linear in n and m,
typically of order logO(1) n or logO(1)m. Usually our algorithm is randomized so we only guaranteed
to succeed with probability 1 − δ and the answer of the query is usually an approximation of the
actual value so our answer is an up to 1± ε multiplicative approximation of the real answer of the
query

If the query we are interested in about care about the counts of each element in [m], we can represent
a data stream by a vector x = (x1, x2, . . . , xm) where x1 is the number of element i appeared in
the stream we have seen so far. Then observing a new element of the stream is equivalent to plus
one on corresponding coordinate of x. We can extend this representation by view a stream as a
sequence of updates (i, a) which updates x only its ith coordinate

xi ← xi + a
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And initially xi = 0 for every i. There is no reason why a must be 1 or positive number so we can
even allow a to be negative although sometimes a < 0 can be a problem when we design algorithm
for some kind of query. That is a generalization of the model stream model and we can always
think of the stream data model in this way throughout this lecture. In this formulation, estimating
the count of distinct elements is the same as estimating ‖x‖0 and the algorithm we discussed in
last lecture is also applicable in estimating ‖x‖0 in this generalized model. And in this lecture we
talked about estimating ‖x‖2. As we mentioned above, we mainly introduced two algorithm for
solving ‖x‖2: the AMS algorithm and JL lemma.

3 Motivation For Estimating L2 Norm

Basically, ‖x‖2 is an important feature for vector x. If we think of x as a empirical distribution
for data samples appeared in the stream, then ‖x‖2 corresponds to the second order moment of x
which reveal the spicky-ness of x in some sense. Since ‖x‖1 = n is fixed, ‖x‖ takes its minimum
value when every xi = n/m which corresponding to uniform distribution and ‖x‖2 gets bigger when
xi is further form uniform. Estimating L2 norm of the data is originated in database application
which I am not going to talk about.

4 AMS Algorithm

The basic idea for AMS algorithm is to get an unbiased estimator of ‖x‖22 by linear sketching and
try to prove concentration by bounding the variance the estimator.

4.1 Description of the algorithm

Choose r1, r2, . . . , rm i.i.d. random variable with P(ri = 1) = P(ri = −1) = 0.5 for every i. Then
we maintain Z = (r, x) =

∑
rixi. Note that Z is linear in x, so when we update x by (i, a), we

only need to increment Z by ria. Then our estimator for ‖x‖22 is Z2. This is a very simple with
very clever idea. Next we will see the analysis of the correctness of the algorithm.

4.2 Correctness of the algorithm

First we show that E(Z2) = ‖x‖22

E(Z2) = E(xT rrTx) = xT E(rrT )x = xTx = ‖x‖22

Here we use the fact that for every i, E(r2i ) = 1 and for every i 6= j, E(rirj) = E(ri)E(rj) = 0

Next we show that var(Z2) is O(‖x‖42)

var(Z2) = E(Z4)− E(Z2)2 = E(Z4)− ‖x‖42

We decompose E(Z4) as

E(Z4) =
∑
i,j,k,l

E(xixjxkxlrirjrkrl) =
∑
i,j,k,l

xixjxkxl E(rirjrkrl)
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Notice E(rirjrkrl) is 0 if there is one index only appear once in i, j, k, l so we only need to consider
the case where every distinct index appears at least twice. Then there are two cases such that
E(rirjrkrl) = 1: a) there are two distinct pairs in (i, j, k, l) b) i, j, k, l are identical. So we have

E(Z4) =
1

2
C2
4

∑
i 6=j

x2ix
2
j +

∑
i

x4i = 3
∑
i 6=j

x2ix
2
j +

∑
i

x4i

Then we can bound E(Z4) by

E(Z4) = 3
∑
i 6=j

x2ix
2
j +

∑
i

x4i ≤ 3
∑
i 6=j

x2ix
2
j + 3

∑
i

x4i ≤ 3‖x‖42

So
var(Z4) ≤ 2‖x‖42

Then we can apply Chebyshev inequality

P(|E(Z2)− ‖x‖22| ≤
√

2c‖x‖22) ≤ 1/c2

As we can observe, this bound is sometimes too loose to be informative for approximating ‖x‖22.
For example, if we choose c = 3 (δ = 1/9), then we have

P(|E(Z2)− ‖x‖22| ≤ 3
√

2‖x‖22) ≤ 1/9

However we know that E(Z2) ≥ 0, so the lower bound it gives is even worse than natural bound.
To boost the error bound, we can just repeat this estimator for k times independently, then we use
the average of those k estimations to get a more accurate estimator. Taking taking the mean of k
independent estimators does not affect the mean of the estimator but it will reduce the variance
by a factor of k.

More specifically, we maintain Z1, Z2, . . . , Zk where for every j, Zj =
∑

i rjixi. rij are i.i.d. random
variables with the same distribution as above. Then our estimator for ‖x‖22 is (

∑
j Z

2
j )/k. To prove

the correctness of this improved estimator, we can also identify the expectation and variance of
the estimator. So E(Y ) = (

∑
j E(Z2

j ))/k = ‖x‖22 and var(Y ) = (
∑

j var(Z2
j ))/k2 ≤ 2‖x‖42/k. The

Chebyshev inequality gives

P(|E(Z2)− ‖x‖22| ≤ c
√

2/k‖x‖22) ≤ 1/c2

If we set c = Θ(1) and k = Θ(1/ε2), we get a (1± ε) approximation with constant probability

The space we need for this algorithm is dominated by the space of storing Zj for all j if we
temporarily ignore the space to generate rji. For a fixed j, the maximum possible value for Zj is
mn so to store Zj we need log(mn). And there are O(1/ε2) such Zj so the total space we need is
O(log(mn)/ε2) bits

Now we can consider how to actually generate these ri. If we look at the proof of correctness in
detail, we can realize that we only need 4-wise independence of ri because throughout the analysis
when we computing E(Z2) and E(Z4), the maximum degree of the polynomial in ri is 4. If we
pick ri by 4-wise independent hash function, all the calculations of the expectations will remain the
same so the analysis and error bounds still hold. We know that we can generate ri from O(logm)
random bits so this is not dominant space consumption in the algorithm.
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We can formulate our algorithm in vector form. Let R be an k by m matrix where Rij = rij ,
then basically we are just maintaining the vector Z = Rx throughout the algorithm and answering
the query by outputting ‖Rx‖22/k. Rx is exactly the linear sketch of x. We can understand the
sketch as a compression of x which largely reduces the dimension of vector but it still has enough
information to give a good estimation for the query we care about. Since it’s a linear sketch, it’s
very convenient for data stream concatenation which often appears in real life application. For
example, if there are two data stream x and y in two different places, and the headquarter want
to estimate ‖x+ y‖22, it’s not necessary to send x and y to the headquarter and do the calculation.
Instead, we can send Rx and Ry to headquarter and output ‖Rx+Ry‖22/k which reduce the load
of transferring the data.

Although AMS algorithm is very simple beautiful, the error bound is not tight enough for arbitrary
error probability δ. If we let c = O(1/

√
δ), we need k = O( 1

δε2
) which is linear in O(1/δ). In fact,

the actual error bound should be much better than our analysis since we only consider variance and
apply Chebyshev inequality. If we somehow consider higher moment of this estimator, we should
get better error bound for this sketch. However, applying other sketching algorithm, we can prove
exponential error bound and obtain k = O(log(1/δ)) easily. Next we will talk about JL sketching
and prove the exponential error bound in this algorithm.

5 JL sketching

In JL sketching, we use normal distribution instead of two point distribution in AMS algorithm.
The advantage of normal distribution is that it’s fully analytic and it’s close under linear operation
so we can derive the exponential tail bound much easier. First we recap some basics about normal
distribution. Normal distribution is distributed on the whole real number and the shape is like a
bell. Normal distribution with mean µ and variance σ2 is denoted by N (µ, σ), the density function
for N (µ, σ) is

1√
2πσ2

exp(−(x− µ)2/2σ2)

One important feature for Normal distribution is that it’s close under linear transformation. For
example, if X and Y are independent random variable with normal distribution. Then X + Y has
normal distribution. For more information about Normal distribution, please check corresponding
wikipedia page.

5.1 Description of the sketch

The sketch matrix R is also an k by m matrix where each entry Rij is an i.i.d. random variable
from N (0, 1) Then everything else is the same as the AMS sketch. That is, we also maintain the
vector Rx and when we want to answer ‖x‖22, just output ‖Rx‖22/k. Next we will analyze this
algorithm especially the exponential tail bound from this sketch
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5.2 Analysis of the algorithm

As before we still have E(‖Rx‖22/k) = ‖x‖22 since

E(‖Rx‖22/k) =
1

k
E(xTRTRx) =

1

k
xT E(RTR)x = ‖x‖22

where E(RTR) is a diagonal matrix with all diagonal entries being k. For every i ∈ [k], the ith
diagonal entry is E(

∑
k R

2
ki) =

∑
k E(R2

ki) = k. For every (i, j) where i 6= j, the (i, j) entry is
E(

∑
k RkiRkj) =

∑
k E(RkiRkj) = 0, Next we will show that

P(|‖Rx‖22 − k‖x‖22| ≥ εk‖x‖22) ≤ exp(−Cε2k)

The proof follows the notes by Ben Rossman and Michel Goemans. Let’s suppose ‖x‖22 = 1 and let
Z = Rx, Then we are going to prove

P(|‖Z‖22 − k| ≥ εk) ≤ exp(−Cε2k)

We provide the prove for one side

P(‖Z‖22 ≥ (1 + ε)k) ≤ exp(−ε2k +O(kε3))

And the other is very similar. Let Y = ‖Z‖22 and let α = k(1 + ε)2, we have for s > 0

P(Y > α) = P(exp(sY ) > exp(sα)) ≤ exp(−sα)E(exp(sY ))

Here we use Markov inequality. We can decompose E(exp(sY )) by independence:

E(exp(sY )) =
∏
i

E(exp(sZ2
i ))

By closure property, Zi also has normal distribution. Since for every i

E(Zi) =
∑
j

E(rijxj) = 0

var(Zi) = E(Z2
i ) =

∑
j

E(r2ijx
2
j ) = ‖x‖22 = 1

we obtain that Zi ∼ N (0, 1), so we can calculate E(exp(sZ2
i )) analytically

E(exp(sZ2
i )) =

1√
2π

∫
exp(st2) exp(−t2/2)dt =

1√
1− 2s

So we get
P(Y ≥ α) = exp(−sα)(1− 2s)−k/2

choose α = k(1 + ε)2 and plug it into above equation we have

P(Y ≥ α) = exp(−εk − ε2k/2 + k ln(1 + ε)) = exp(−kε2 + kO(ε3))

Here we use the taylor expansion ln(1 + x) = x− x2/2 + O(x3). Upon having this tail bound, we
prove the correctness of the estimation and we obtain better parameter for k. Let exp(−Cε2k) = δ
we have k = O( 1

ε2
log 1

δ ) to get 1± ε approximation with probability 1− δ
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We can also reduce the randomness needed in JL sketching by using k-wise independence to generate
R, however we can not achieve exponential tail bound if we only allow const-wise independent
randomness since in the proof we decompose E(exp(sY )) into

∏
i E(exp(sZ2

i )) where we need k-
wise independence to make this go through.

As for time complexity of computing these sketch, basically we need O(k) to update the sketch.
This could be a problem is k is large but there are some improvements that we can apply to reduce
updating time. We will introduce fast JL and sparse JL a few lectures later
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