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1 Overview

In this lecture MIT graduate student Chris Musco went over a technique known as random feature
maps for Kernel learning. The outline is as follows:

1. Review of Kernel Methods
2. Rahimi-Recht Algorithm

3. Cleanup, improvements

2 Review of Kernel Methods

Kernel methods turn ”linear” learning algorithms into nonlinear ones. Examples of such are algo-
rithms are:

e Linear Regression
e Support Vector Machine

e Principal Components Analysis (Linear Dimensionality Reduction)

In this lecture we use regression as the example.

2.1 Overview of Regression

Goal: Given A € R"™4 b € R", we wish to learn a function f such that f(a;) =~ b;. We assume
that f(2) = 272 and we wish to minimize mingcga ||Az — b]|2.

What happens if we want to learn polynomial f? We have two options.



2.2 Learning Nonlinear Mappings
Option 1: Explicit Basis Functions

Suppose we want to learn quadratic f. Given
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we let the feature map be
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We then run normal linear regression on ¢(z). The problem is that as you increase dimension of
the polynomial f this quickly becomes infeasible as the vector becomes too large.

Option 2: Kernel Trick

Two observations:

1. For linear learning, we need access only to all pairwise dot products (a;, a;)

2. We can compute these pairwise dot products faster than through explicit feature computation
We first prove the first observation:

Proof.
min ||Az — b||s = min ||[AATy — b/,
zER? yeRn

Note that we can let 2 = ATy for some y since z (under optimality) needs to be in the rowspan of
A. The matrix K := AAT is called the Kernel matrix with K;j = (ai, aj) as desired. O

Next we prove the second observation.



Proof. Consider quadratic f for clarity:
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It extends further that for a polynomial of degree ¢, the dot product is given by ({x,y) + 1)?. This
is called the Kernel function. In this case it can be computed in O(d) time. O

A few examples of notable Kernel functions include:

e Gaussian Kernel: K(x,y) = e—llz=yll?
e Exponential Kernel: K(z,y) = e~ llz=yll

e Laplacian Kernel: K(z,y) = e—llz=yllx

These Kernels are all shift invariant, i.e. they only depend on A := x — y. They define a sort of
similarity score that goes towards 0 if x,y are far apart, and towards 1 if they are close.

3 Rahimi-Recht Algorithm

Now onto algorithms. Since linear regression with Kernels requires computing and inverting K as
the major operations, we should note the following complexities:

e Constructing K: O(n?d)
— This is a problem, and the subject of what follows
e Inverting K: O(n?)
— This can be made faster using methods we have seen previously, such as iterative algo-

rithms, sketching, etc.

3.1 Rahimi-Recht for a Gaussian Kernel

What follows comes from the 2007 NIPS paper by Ali Rahimi and Benjamin Recht [1].



Goal: For a positive definite shift invariant kernel function, give a rank 106%” approximation to

K.

This is done by producing a mapping from A to Z where Z has dimensions n by 1052”, and

77T ~ K. The algorithm leads to overall O(ndl(’g") compute time for Z. One can also then

2
invert ZZ1 (use the SVD to see this) in time O(n1°§4 ™) time. The authors proved the claim for all
PD shift invariant Kernels, but we restrict ourselves to Gaussian Kernels for simplicity.

We use the Fourier Transform for a Multidimensional Gaussian and compute:

o 2
d(2)T(y) = e 1A
_ / /2=l =2min ™A g
R

= /R g(n)e™27" Adp

= Epegle 21"

Where g(n) > 0 Vn is a valid probability density function (to see why just consider the expression
when A = 0). Note that Bochner’s theorem states that g > 0 for all shift invariant positive
definite kernel functions, and this allows the proof to generalize beyond Gaussians. We note also
that g is a multivariate Gaussian, and so we can sample from g efficiently.

By Monte Carlo Integration, we take m independent samples of 1 from g and approximate:

m
—2minT Ay —2minT A
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Where we use the complex inner product in the last line and
6—27&'1‘77{30
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Claim: Ifm = O(—%%), then with probability at least 14, (¢(z), o(y)) € [K(z,y)—e, K(z,y)+¢.
The proof follows directly from a simple complex-number extension to Chernoff, noting that each
term in the sum has norm 1.




4 Cleanup, Improvements

4.1 Removing Complex Numbers
We note that since imaginary terms have 0 expectation:
Ep~g e_QM"Txe_QM”T(_y)} =E [(COS(—QTH]T{L‘) + isin(—2mnT z))(cos(—2mnTy) + isin(27r77Ty))]
=E [ cos(2mn” ) cos(2mn’ y) + sin(27n” x) Sin(27rnTy)]

It then follows that we can let

4.2 Faster Multiplication by Gaussians

Note that a significant bottleneck is that to generate the map gg(x), one must multiply a d-
dimensional vector x with m random multivariate Gaussians (which forms a random Gaussian
matrix), which is a runtime of O(dm). The question arises as to if one can apply the random
Gaussian faster. The answer is yes. The Fastfood Embeddings developed by Le, Sarlos, and
Smola [2] approximately apply the Gaussian in O(max{m,d}logd) time, and one can still recover
the same probabilisitic guarantee with this approach.

Another relevant paper is Kaprelov, Potluru, and Woodruft’s ” How to Fake Multiply by a Gaussian”
[3]. It seems there is still significant room for improvement in this domain.

4.3 Additive Error Analyis

What is the deal with additive error on each entry?
We have that K + ¢ = K, however, this may not be good enough, as if each entry is off by ¢, then

||[K — K||r < en, and this could be huge. With Chernoff, we can show that if ¢ = % and m ~ n,

||IK — K|| < /n, where we are taking the spectral norm. However, using stronger Matrix Norm
concentration inequalities, we can get the same bound using m = /n samples.
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