
Sketching Algorithms for Big Data Fall 2017

Lecture 24 — November 28, 2017

Christopher Musco Scribe: Akshat Agrawal

1 Overview

In this lecture MIT graduate student Chris Musco went over a technique known as random feature
maps for Kernel learning. The outline is as follows:

1. Review of Kernel Methods

2. Rahimi-Recht Algorithm

3. Cleanup, improvements

2 Review of Kernel Methods

Kernel methods turn ”linear” learning algorithms into nonlinear ones. Examples of such are algo-
rithms are:

• Linear Regression

• Support Vector Machine

• Principal Components Analysis (Linear Dimensionality Reduction)

In this lecture we use regression as the example.

2.1 Overview of Regression

Goal: Given A ∈ Rn×d, b ∈ Rn, we wish to learn a function f such that f(ai) ≈ bi. We assume
that f(z) = xT z and we wish to minimize minx∈Rd ||Ax− b||2.

What happens if we want to learn polynomial f? We have two options.

1

2.2 Learning Nonlinear Mappings

Option 1: Explicit Basis Functions

Suppose we want to learn quadratic f . Given

z =


z1

z2
...
zd

 ∈ Rd

we let the feature map be

φ(z) =


z1

z2
1

z1z2
...
z2
d

 ∈ Rd
2+d

We then run normal linear regression on φ(z). The problem is that as you increase dimension of
the polynomial f this quickly becomes infeasible as the vector becomes too large.

Option 2: Kernel Trick

Two observations:

1. For linear learning, we need access only to all pairwise dot products 〈ai, aj〉

2. We can compute these pairwise dot products faster than through explicit feature computation

We first prove the first observation:

Proof.
min
x∈Rd

||Ax− b||2 = min
y∈Rn

||AAT y − b||2

Note that we can let x = AT y for some y since x (under optimality) needs to be in the rowspan of
A. The matrix K := AAT is called the Kernel matrix with Kij = 〈ai, aj〉 as desired.

Next we prove the second observation.

2

Proof. Consider quadratic f for clarity:

〈φ(x), φ(y)〉 =


1√
2x1

x2
1√

2x1x2
...




1√
2y1

y2
1√

2y1y2
...


= 1 + x1y1 + 2x2

1y
2
1 + 2x1x2y1y2 + · · ·

= (x1y1 + x2y2 + · · ·+ xdyd + 1)2

= (〈x, y〉+ 1)2

It extends further that for a polynomial of degree q, the dot product is given by (〈x, y〉+ 1)q. This
is called the Kernel function. In this case it can be computed in O(d) time.

A few examples of notable Kernel functions include:

• Gaussian Kernel: K(x, y) = e−||x−y||
2

• Exponential Kernel: K(x, y) = e−||x−y||

• Laplacian Kernel: K(x, y) = e−||x−y||1

These Kernels are all shift invariant, i.e. they only depend on ∆ := x− y. They define a sort of
similarity score that goes towards 0 if x, y are far apart, and towards 1 if they are close.

3 Rahimi-Recht Algorithm

Now onto algorithms. Since linear regression with Kernels requires computing and inverting K as
the major operations, we should note the following complexities:

• Constructing K: O(n2d)

– This is a problem, and the subject of what follows

• Inverting K: O(n3)

– This can be made faster using methods we have seen previously, such as iterative algo-
rithms, sketching, etc.

3.1 Rahimi-Recht for a Gaussian Kernel

What follows comes from the 2007 NIPS paper by Ali Rahimi and Benjamin Recht [1].

3

Goal: For a positive definite shift invariant kernel function, give a rank logn
ε2

approximation to
K.

This is done by producing a mapping from A to Z where Z has dimensions n by logn
ε2

, and

ZZT ≈ K. The algorithm leads to overall O(nd logn
ε2

) compute time for Z. One can also then

invert ZZT (use the SVD to see this) in time O(n log2 n
ε4

) time. The authors proved the claim for all
PD shift invariant Kernels, but we restrict ourselves to Gaussian Kernels for simplicity.

We use the Fourier Transform for a Multidimensional Gaussian and compute:

φ(x)Tφ(y) = e−||∆||
2

=

∫
R
πd/2e−||η||

2π2
e−2πiηT∆dη

=

∫
R
g(η)e−2πiηT∆dη

= Eη∼g[e−2πiηT∆]

Where g(η) > 0 ∀η is a valid probability density function (to see why just consider the expression
when ∆ = 0). Note that Bochner’s theorem states that g ≥ 0 for all shift invariant positive
definite kernel functions, and this allows the proof to generalize beyond Gaussians. We note also
that g is a multivariate Gaussian, and so we can sample from g efficiently.

By Monte Carlo Integration, we take m independent samples of η from g and approximate:

Eη∼g[e−2πiηT∆] ≈ 1

m

m∑
j=1

e−2πiηTj ∆

=
1

m

m∑
j=1

e−2πiηTj xe−2πiηTj (−y)

= 〈φ̃(x), φ̃(y)〉

Where we use the complex inner product in the last line and

φ̃(x) =


1√
m
e−2πiηT1 x

...
1√
m
e−2πiηTmx



Claim: Ifm = O(
log 1

δ
ε2

), then with probability at least 1−δ, 〈φ̃(x), φ̃(y)〉 ∈ [K(x, y)−ε,K(x, y)+ε].
The proof follows directly from a simple complex-number extension to Chernoff, noting that each
term in the sum has norm 1.

4

4 Cleanup, Improvements

4.1 Removing Complex Numbers

We note that since imaginary terms have 0 expectation:

Eη∼g
[
e−2πiηT xe−2πiηT (−y)

]
= E

[
(cos(−2πηTx) + i sin(−2πηTx))(cos(−2πηT y) + i sin(2πηT y))

]
= E

[
cos(2πηTx) cos(2πηT y) + sin(2πηTx) sin(2πηT y)

]
It then follows that we can let

φ̃(x) =
1√
m


cos(2πηT1 x)
sin(2πηT1 x)

...
cos(2πηTmx)
sin(2πηTmx)



4.2 Faster Multiplication by Gaussians

Note that a significant bottleneck is that to generate the map φ̃(x), one must multiply a d-
dimensional vector x with m random multivariate Gaussians (which forms a random Gaussian
matrix), which is a runtime of O(dm). The question arises as to if one can apply the random
Gaussian faster. The answer is yes. The Fastfood Embeddings developed by Le, Sarlos, and
Smola [2] approximately apply the Gaussian in O(max{m, d} log d) time, and one can still recover
the same probabilisitic guarantee with this approach.

Another relevant paper is Kaprelov, Potluru, and Woodruff’s ”How to Fake Multiply by a Gaussian”
[3]. It seems there is still significant room for improvement in this domain.

4.3 Additive Error Analyis

What is the deal with additive error on each entry?
We have that K̃ ± ε = K, however, this may not be good enough, as if each entry is off by ε, then
||K̃ −K||F ≤ εn, and this could be huge. With Chernoff, we can show that if ε = 1√

n
and m ≈ n,

||K̃ − K|| ≤
√
n, where we are taking the spectral norm. However, using stronger Matrix Norm

concentration inequalities, we can get the same bound using m ≈
√
n samples.

References

[1] Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. Advances
in Neural Information Processing Systems, 20:1177–1184, 2007.

[2] Quoc V. Le and Tamás Sarlós and Alexander J. Smola. Fastfood - Computing Hilbert Space
Expansions in loglinear time. Proceedings of the 30th International Conference on Machine
Learning, 30:244–252, 2013.

5

[3] Michael Kapralov and Vamsi K. Potluru and David P. Woodruff. How to Fake Multiply by a
Gaussian Matrix. Proceedings of the 33nd International Conference on Machine Learning, 33:
2101–2110, 2016.

6

