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1 Overview

This lecture will be on “Optimal Compression of Approximate Inner Products and Dimension
Reduction”, following the paper of Alon and Klartag [AK17].

We will study the following object:

Definition 1. An ε-inner-product sketch for points X ⊆ Rk, |X| = n, such that ∀x : ||x||2 ≤ 1, is
a data structure that enables one to compute the inner-product〈

x, x′
〉
∀x, x′ ∈ X

up to additive error ε.

Let f(n, k, ε) be the minimum size (in bits) of an ε-inner-product sketch for n points in dimension
k. (We can assume n ≥ k WLOG, and further ε ≥ 1/n0.5−δ, since this is the interesting case for
dimensionality reduction).

There are various applications for this data structure, for example in streaming, compressed sensing,
and computational geometry (eg, Nearest-Neighbors).

Main Questions: What is f(n, k, ε)? And, can we compute sketches efficiently?

We will first do a warm-up, and then present the Main Theorem of [AK17] which exactly charac-
terizes f(n, k, ε).

2 Warm-Up

First, let us consider the basic case of when k = n. We claim an easy upper-bound here is

f(n, n, ε) ≤ O(n
log n

ε2
log(1/ε))

To do this:

1. First use JL to project the n points in Rn down to dimension m := O( logn
ε2

), with distortion
O(ε).

2. Then, round the projected points to an ε-net of the unit ball in Rk.
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The ε-net in Step 2 requires at most O(1
ε )(1+o(1))m points, so we need O(m log(1/ε)) bits per point.

This yields the claim.

In fact, this bound on f(n, n, ε) is nearly-tight. The log(1/ε) factor can be shaved, as first shown
by Kushilevitz, Ostrovsky, and Rabani [KOR98]. The construction is simple:

Construction: Let v1, . . . , vt be random unit vectors in Rn, for t = O( logn
ε2

). For every x ∈ X,
maintain just the t signs: {sign(〈x, vi〉)}i∈[t].

Proof sketch: The idea is, for two vectors x, x′, a random unit vector vi will distinguish them
(ie, sign(〈x, vi〉) 6= sign(〈x′, vi〉)) with probability proportional to the angle between x, x′. Thus,
maintaining t signs gives a good enough approximation of this angle, and taking the cosine recovers
approximately 〈x, x′〉.

Note that this construction does not yield better bounds on f(n, k, ε) for smaller k < n.

3 Main Theorem

Theorem 2 ([AK17]). Let f(n, k, ε) be the minimum size (in bits) of an ε-inner-product sketch for
n points in dimension k.

Then, ∀n ≥ k, ε ≥ 1
n0.49 :

(A) For logn
ε2
≤ k ≤ n : f(n, k, ε) = Θ(n logn

ε2
)

(B) For log n ≤ k ≤ logn2

ε2
: f(n, k, ε) = Θ(nk log(2 + logn

ε2k
))

(C) For 1 ≤ k ≤ log n : f(n, k, ε) = Θ(nk log(1/ε)).

Note that these bounds all agree on their common boundaries.

Remark 1. The Main Theorem considers additive error. Recently Indyk and Wagner [IW17]
have shown how to achieve relative error guarantees (which is harder). Note, there is still a gap of
log(1/ε) between upper and lower bounds here.

Remark 2. The Main Theorem gives an alternative proof of a recent result by Larsen and Nel-
son [LN17]: There does not exists a dimensionality reduction of n points in Rn to dimension < c logn

ε2

for some small constant c.

This follows because in the regime k < logn
ε2

, f(n, k, ε) decays rapidly with k, in particular f(n, n, 2ε) >
f(n, k, ε). That is, there are simply too many configurations of points in Rn to be faithfully com-
pressed in Rk.

Note, this also implies that once k < n
ε2

, even dimensionality reduction by a factor of (say) 10 is
impossible.

Remark 3. It turns out that the Main Theorem can be combined with the Khatri-Sidak Lemma
and Hargié Inequality (which are special cases of “Gaussian Correlation”), to work for all ε ≥ 1√

n
.

See [AK17] for details.

For the statement, replace log n by log(2 + ε2n) everywhere in the Main Theorem.

2



4 Proof of Main Theorem

We will now see two proofs of the upper bound (non-constructive and constructive), and one proof
of the lower bound.

4.1 Upper Bound

Consider first the regime (A), where logn
ε2
≤ k ≤ n. We wish to show f(n, k, ε) = Θ(n logn

ε2
).

Regime (A) By monotonicity, it is sufficient to show (A) for k = n. By JL, we may first project
points into dimension m := logn

ε2
, with distortion O(ε).

For vectors w1, . . . , wn ∈ Rm, define the Gram Matrix G(w1, . . . , wn) as Gi,j := 〈wi, wj〉. Say two
Gram Matrices G,G′ are ε-separated if ∃i 6= j : |Gi,j − G′i,j | > ε. Let G be a maximal (w.r.t
containment) set of ε-separated Gram Matrices. Then, we clearly have f(n, k, ε) ≤ log |G| (simply
by remembering, for a point set X, the index of a g ∈ G that G(X) is not ε-separated from)

We now want to bound |G|. We will use essentially a volume argument. Let v1, . . . , vn ∈ Rm be
random vectors, each uniform in a ball of radius 2 about the origin. For all G(w1, . . . wn) ∈ G,
define the event

AG := {∀i, j : | 〈vi, vj〉 − 〈wi, wj〉 | ≤ ε/2}.
Notice the events {AG}G∈G are pairwise disjoint, by ε-separatedness of G. Thus,

∑
G∈G P[AG] ≤ 1.

So if the individual probabilities P[AG] are large, then there cannot be many such events AG
(thus bounding |G|). It is easy to see that P[AG] ≥ Ω(ε)mn (by noticing that the condition {∀i :
||vi − wi||2 ≤ ε/4} is sufficient). We will show that in fact, a much better bound holds:

P[AG] ≥ Ω(1)mn.

First, let us condition on the event

E := {∀i : ||vi − wi||2 ≤ 1}.

We have P[E] = (1
2)nm, by comparing volumes (since we pick wi uniformly from a ball of radius

2). Moreover, conditioned on this event E, the vector (vi − wi) is uniform over a unit ball in Rm.
Thus, by concentration (eg Azuma-Hoeffding) we have

∀i 6= j : P[| 〈vi − wi, wj〉 | ≥ ε/4 |E] ≤ 2e−Ω(ε2m) <
1

2n2

And symmetrically,

∀i 6= j : P[| 〈vi, vj − wj〉 | ≥ ε/4 |E] ≤ 2e−Ω(ε2m) <
1

2n2

This allows us to union bound over all pairs i 6= j. In particular, we now know that with probability
≥ 1

2(1
2)nm, the following simultaneously holds:

∀i : ||vi − wi||2 ≤ 1

∀i 6= j : | 〈vi − wi, wj〉 | < ε/4

∀i 6= j : | 〈vi, vj − wj〉 | < ε/4
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This is sufficient to imply AG holds, since by the last two conditions and triangle inequality:

| 〈vi, vj〉 − 〈wi, wj〉 | = | 〈vi − wi, vj〉+ 〈wi, vj − wj〉 | ≤ | 〈vi − wi, vj〉 |+ | 〈wi, vj − wj〉 | ≤ ε/2

Thus, P[AG] ≥ (1
2)mn+1 and so |G| ≤ 2mn+1. And we have f(n, k, ε) ≤ log |G| = O(nm) = O(n logn

ε2
)

as desired.

Remark 4. What is going on is, once we condition on E, then each wi is uniform in a unit ball
centered around vi, and so and so by concentration we have 〈wi, wj〉 ≈ 〈vi, vj〉.

Regime (B) This is essentially the same as Regime (A), except without the JL projection.

In particular, for k = δ2

ε2
log n and 2ε ≤ δ < 1/2: Let G be a maximal set of ε-separated Gram

Matrices (of vectors in Rk with norm ≤ 1). Take v1, . . . , vn ∈ Rk random vectors as before, and
condition on the event

E := {∀i : ||vi − wi||2 ≤ δ/40}

Then,
P[E] = (δ/80)kn

and the rest follows as before.

That is, after conditioning on E,

∀i 6= j : P[| 〈vi − wi, wj〉 | ≥ ε/4 |E] ≤ 2e−Ω(kε2/δ2) <
1

2n2

And we conclude as in part (A).

Regime (C) Here we can simply round to the closest point in an ε-net for the unit ball. This
gives O(k log(1/ε)) bits per point.

4.2 Upper Bound: Algorithmic Proof

Here we sketch an alternative, constructive proof of the upper-bound.

Regime (A) Apply JL projection into dimension m := logn
ε2

, and then do randomized rounding
to a (1/2)-net. (For example, each coordinate is randomly rounded to an integral multiple of 1√

2m
,

preserving its expectation).

By concentration (eg, Chernoff-Hoeffding) the randomized rounding stage does not distort too
much w.h.p.

Regime (B) Here we skip the JL projection, and just do randomized rounding of each coordinate

to an integral multiple of δ/
√
k for k = δ2

ε2
log n.

Regime (C) We simply (deterministically) round each coordinate to the nearest integer multiple
of ε/

√
k.
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4.3 Lower Bound

We now describe the main ideas of the lower bound.

The Main Lemma is the following:

Lemma 3. If k = δ2

200ε2
log n, then

f(n, k, ε) ≥ Ω(nk log(1/δ)).

Proof Sketch Let N be a maximal δ-packing in Rk (such that the distance between any two
points in N is ≥ δ). Note |N | = (1

δ )k.

We can show that w.h.p., a random set R of (n/2) unit vectors in Rk satisfies:

∀x 6= x′ ∈ N : ∃y ∈ R : | 〈x, y〉 −
〈
x′, y

〉
| > ε

That is, w.h.p. R distinguishes every pair of points in N .

Fix such an R. Then, each (ordered) configuration of R together with > (n/2) points of N requires
a distinct encoding. Because, any two such configurations must share two points x, x′ ∈ N in
common, and then R suffices to distinguish these x, x′ – so they cannot be represented by the same
encoding. Thus,

f(n, k, ε) ≥ log |N |n/2 = Ω(
n

2
log |N |) = Ω(nk log(1/δ))
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