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Guest Lecture by Cameron Musco Scribe: Jacob Klegar

1 Low-Rank Approximation and Clustering Via Sketching

We approach solving the problems of low-rank approximation and clustering via a generalization
of subspace embeddings called ”Projection-Cost Preserving Sketches”, or PCP’s for short. The
material for this lecture comes from a paper by Cohen et al. [1].

1.1 Low-Rank Approximation

Definition 1 (Low-Rank Approximation). Given A ∈ Rn×d, find argmin
rank k matrix B

‖A − B‖2F . Or

equivalently, find argmin
rank k projection matrix P

‖A− PA‖2F .

The output P ∗ of Low-Rank Approximation is a projection onto A’s top k singular vectors, i.e.,

P ∗A = UkU
T
k A = Ak

where Uk is the matrix with the top k singular vectors of A.

This takes O(nd2) time, and approximate iterative methods take Õ(nnz(A)k) time, where nnz(A)
is the number of nonzero values of A. We want to do better.

Definition 2 (PCP). Ã ∈ Rn×m is an (ε, k)-PCP for A if ∀ rank k projections P :

(1− ε)‖A− PA‖2F ≤ ‖Ã− PÃ‖2F ≤ (1 + ε)‖A− PA‖2F

Ideally we have m� d.

Now assuming we have Ã an (ε, k)-PCP for A, let P̃ ∗ = argmin
rank k projections P

‖Ã− PÃ‖2F . Then

‖A− P̃ ∗A‖2F ≤
1

1− ε
‖Ã− P̃ ∗Ã‖2F

≤ 1

1− ε
‖Ã− P ∗Ã‖2F

≤ 1 + ε

1− ε
‖A− P ∗A‖2F

For small ε we have 1+ε
1−ε = 1 +O(ε).

The run time using PCP is now O(nm2).
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Theorem 3. We can compute an (ε, k)-PCP for A in nnz(A) + Õ(nk2/ε2) time with m ≈ k/ε2.

This would make the total run time O(nnz(A))+Õ(nk2/ε4). Before proving this theorem, we show
another application of PCPs.

1.2 Constrained Low-Rank Approximation Problem

Definition 4 (Constrained Low-Rank Approximation Problem). Let T ⊆ all rank k projection
matrices. Then find argmin

P∈T
‖A− PA‖2F .

Claim 5. If Ã is an (ε, k)-PCP for A, and P̃ ≤ γmin
P∈T
‖Ã− PÃ‖2F , then

‖A− P̃A‖2F ≤ (1 +O(ε))γmin
P∈T
‖A− PA‖2F

This follows from the same reasoning as before.

Definition 6 (k-means clustering). Given a1, ..., an ∈ Rd, which we can represent as the rows of
A ∈ Rn×d,

min
partitions into k sets C={C1,...,Ck}

k∑
i=1

∑
j∈Ci

‖aj − µ(Ci)‖22

where µ(Ci) = 1
|Ci|

∑
j∈Ci

aj is the centroid.

We now show that k-means is constrained low-rank approximation. Let

f(C,A) =
∑
j∈Ci

‖aj − µ(Ci)‖22.

Then we will show

f(C,A) = ‖A− PCA‖2F

for some rank k projection matrix PC .

We have PC = ZT
CZC , where ZC is a cluster indicator matrix, i.e., ZC ∈ Rk×n and

(ZC)ij =


1√
|Ci|

if aj ∈ Ci

0 otherwise.

Note ZC is an orthogonal matrix and ZCZ
T
C = I, which implies PC is a projection.

So we get ‖A− ZT
CZCA‖2F .

After showing these applications, we now show how to get a PCP sketch.
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2 Projection-Cost Preserving Sketches

2.1 Subspace Embeddings

Definition 7 (Subspace Embedding). Given A ∈ Rn×d, S is an ε-subspace embedding if ∀x ∈
Rn, ‖xTAS‖22 ∈ (1± ε)‖xTA‖22.

Observation 8. If S is a subspace embedding, it is an (ε, k)-PCP for any k.

Let Y ∈ Rn×n, Y = I − P .

Then PCP is equivalent to

‖Y Ã‖2F =

n∑
i=1

‖yTi Ã‖22 ∈ (1± ε)‖Y A‖2F .

Then set Ã = AS. We get

‖Y AS‖2F =
n∑

i=1

‖yTi AS‖22 ∈ (1± ε)
n∑

i=1

‖yTi A‖22 = (1± ε)‖Y A‖2F

S works but is too expensive. Typically S ∈ Rd×m where m = Θ(d/ε2). We want m = Θ(k/ε2).

2.2 Smaller m

Theorem 9. S ∈ Rd×m, where Sij = ± 1√
m

independently at random. Then if m = O(k log(1/δ)ε−2),

then Ã = AS is (ε, k)-PCP with probability 1− δ.

That is, letting Y = I − P for any rank k projection P , we want the PCP guarantee:

|‖Y A‖2F − ‖Y AS‖2F | ≤ ε‖Y A‖2F

Write A = Ak +Ak, where Ak is A projected onto its top k singular vectors (what we care about)
and Ak is the rest (noise).

Then our expression becomes

|‖Y (Ak +Ak)‖2F − ‖Y (Ak +Ak)S‖2F |

Now using the fact that ‖M‖2F = tr(MMT ):

tr(Y AkA
T
k Y )+tr(Y AkA

T
k
Y )+2 tr(Y AkA

T
k
Y )−tr(Y AkSS

TAT
k Y )−tr(Y AkSS

TAT
k
Y )−2 tr(Y AkSS

TAT
k
Y )

Note that tr(Y AkA
T
k
Y ) = 0 since Ak, Ak are orthogonal.
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2.3 Head Terms (Subspace Embedding)

We show

| tr(Y AkA
T
k Y )− tr(Y AkSS

TAT
k Y )| ≤ ε‖Y A‖2F

Note the left hand side is

|‖Y Ak‖2F − ‖Y AkS‖2F | ≤ ε‖Y A‖2F

Ak is rank k, so since m ≈ k/ε2, S is an ε-subspace embedding for Ak, i.e., ∀x, ‖xTAkS‖22 ∈
(1± ε)‖xTAk‖22.

2.4 Tail Term (Approximate Matrix Multiplication)

We bound

| tr(Y AkA
T
k
Y )− tr(Y AkSS

TAT
k
Y )|

Recall Y = I − P .

‖(I − P )Ak‖
2
F = ‖Ak‖

2
F − ‖PAk‖

2
F

So we get

‖Ak‖
2
F − ‖PAk‖

2
F − ‖AkS‖

2
F + ‖PAkS‖

2
F

If m > log(1/δ)ε−2, then |‖Ak‖
2
F − ‖AkS‖

2
F | ≤ ε‖Ak‖

2
F ≤ ε‖(I − P )A‖2F for any P .

Now

|‖PAk‖
2
F − ‖PAkS‖

2
F |

= | tr(P [AkA
T
k
−AkSS

TAT
k

]P )|

Let M = AkA
T
k
−AkSS

TAT
k

and let λ1 > ... > λk > 0 be its first k eigenvalues. Then we get
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=
k∑

i=1

λi(M)|

≤
k∑

i=1

|λi(M)|

≤
√
k

√√√√ k∑
i=1

λ2i (M)

≤
√
k‖PMP‖F

≤
√
k‖M‖F

Recall (Approximate Matrix Multiplication) that for any C,D,

‖CD − CSSTD‖ ≤ 1√
m
‖C‖F ‖D‖F

where m is the number of columns in S.

Here, we take C = D = Ak. Then we get

≤
√
k
ε√
k
‖Ak‖

2
F

≤ ε‖Ak‖
2
F

≤ ε‖(I − P )A‖2F

for any P .

2.5 Cross Term

We show

| tr(Y AkSS
TAT

k
Y )|

is small. Set C = AAT and let C+ be the pseudoinverse of C. Then this becomes

| tr(Y CC+AkSS
TAT

k
Y )|

= | tr(Y 2CC+AkSS
TAT

k
)|

= | tr(Y CC+AkSS
TAT

k
)|

= | tr((Y CC+/2)(C+/2AkSS
TAT

k
)|

≤
√

tr(Y CC+/2C+/2CY )
√

tr(AkSS
TAT

kC
+/2C+/2AkSSTAT

k
)
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where the last inequality comes from Cauchy-Schwarz. Then the first part can be bounded by

√
tr(Y CC+/2C+/2CY )

=
√

tr(Y CY )

=
√

tr(Y AATY )

= ‖Y A‖F

Using SVD, we get Ak = VkΣkV
T
k , so

√
tr(AkSS

TAT
kC

+/2C+/2AkSSTAT
k

)

=
√

tr(AkSS
TVkΣkU

T
k UΣ−2UTUkΣkV

T
k SS

TAT
k

)

=
√

tr(AkSS
TVkV

T
k SS

TAT
k

)

= ‖AkSS
TVk‖F

≤ 1√
m
‖Ak‖F ‖Vk‖F

≤ ε√
k
‖(I − P )A‖F

√
k

= ε‖(I − P )A‖F

again for any P .
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