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1 Overview

Today in lecture, we considered lower bounds for streaming. So far, we have seen streaming al-
gorithms for norm estimation, heavy hitters, and sparse approximation. A natural question that
arises is whether these algorithms are optimal in terms of space and time complexities.

Typical lower bound considerations proceed via one of two methods: either we use the Pigeonhole
Principle to bound the amount of space required to distinguish different inputs, or we use the
formality of Communication Complexity to bound the same. (Note, Pigeonhole Principle can
be considered to be a special case of a communication complexity argument.)

Today, we show that randomness and approximation are necessary to estimate ||x||0 in space
sub-linear in the dimension m and that we need Ω( 1

ε2
) bits to (1 + ε)−approximate ||x||2.

2 Estimating ||x||0

2.1 Warmup Theorem

Theorem Any deterministic exact algorithm for computing ||x||0 needs Ω(m) bits of space.

Proof Assume there is an algorithm A using M bits of space. Now take any vector y ∈
{0, 1}m, ||y||0 = m

2 . Feed the coordinates of y to A and let A[y] be the state of A at the end
of this process, and E be its estimation of ||y||0.

We can decode y from A[y] using the following procedure. For any z ∈ {0, 1}m, ||z||0 = m
2 ,

feed z to A in state A[y], obtaining A[y+z]. The algorithm computes an estimation E′ of ||y+z||0.
We have two cases now:

• If y = z, then ||y + z||0 = m
2 .

• Otherwise, y 6= z and ||y + z||0 > m
2 .

We have y = z if and only if E = E′. The number of distinct states A[y] is lower bounded by
(

m
m/2

)
= exp(Ω(m)), so M is Ω(m).
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2.2 Upgraded Theorem

Theorem Any deterministic c-approximate algorithm for computing ||x||0 needs Ω(m) bits of
space for c = 1 + ε < 2. Our algorithm, then, will produce an output estimate E such that
||x||0 ≤ E ≤ c||x||0.

Proof For the proof here, we utilize error-correcting codes. For any y ∈ {0, 1}m, let ECC(y) ∈
0, 1m

′
, m′ = O(m) be such that ||ECC(y)||0 = m′

a , a = Θ(1) and for any y 6= z, the distance

||ECC(y) − ECC(z)||0 ≥ 2m′ ε
a . (which implies that ||ECC(y) + ECC(z)||0 ≥ m′

a + m′ ε
a = m′ c

a).
Now, take any y ∈ {0, 1}m and feed the coordinates of ECC(y) to A. The remainder of the argument
essentially as before (except that y = z if and only if E′ < m′ c

a).

2.3 Upgraded Theorem 2

Theorem Any randomized exact algorithm for computing ||x||0 needs Ω(m) bits of space.

Proof Assume the probability of error is less than 1/16. Take any ECC with minimum distance
greater than m′

4 , which would mean that we can recover from errors of m′

8 errors. (Consider a ball

of radius m′

8 around the code word. Since this is empty, we simply need to approximate to the
closest code word.)Then, take any y and feed the coordinates of ECC(y) to A. With probability 1

2

we can recover z such that ||z − ECC(y)||0 < m′

8 , which means that we can recover y. In parallel,
for any i = 1...m′, feed ei to A with state A[ECC(y)], obtaining estimate Ei and set zi = 0 if and
only if Ei > ||ECC(y)||0 (which fails with probability 1/16). Markov’s inequality implies that the
fraction of errors is less than 1

8 with probability greater than 1
2 .

2.4 Formal Recap

For any y ∈ {0, 1}m, by feeding ECC(y) to A and then recovering a vector in {0, 1}m, we correctly
recover y with probability 1

2 . Formally, we have two mappings F,G that satisfying the following
property: for each y ∈ {0, 1}m the probability Pr[G(Fr(y)) = y] ≥ 1

2 :

• The mapping Fr is such that given y ∈ {0, 1}m and a sequence r of random bits used by the
algorithm, it returns a state of the algorithm (obtained by feeding ECC(y) to A).

• The mapping G(S) maps a state S of the algorithm to a vector in {0, 1}m (the mapping is
defined by the recovery process).

This implies that there exists r such that G(Fr(y)) = y holds for at least 1
2 of y ∈ {0, 1}m, which

then implies that the number of the states of the algorithms is at least 2m

2 .

“That was basic principles. Now let’s see how professionals prove lower bounds.”

2



3 Communication Complexity

3.1 Overview

Alice and Bob are communicating in some number of rounds. We want to know what is the min-
imum amount of information Alice needs to transmit to Bob and vice versa in order to solve the
problem. More formally, our resources are the number of bits and the number of rounds. (Today,
we will only consider one-round protocols.) We have a constant δ > 0 probability of error. [See
Kushilevitz and Nisan [1] for more about the communication complexity.]

For a streaming algorithm, we note that if Alice has to transmit M bits to Bob, this is exactly the
amount of space required to store information.

3.2 Balanced Indexing Problem

Here, Alice has a vector x ∈ {0, 1}m such that ||x||0 = m
2 . Bob has an index i = 1...m. Our goal is

to compute f(x, i) = xi.

Theorem Any randomized one-round protocol for indexing has Ω(m) bit complexity.

Proof We proceed using the Pigeonhole Principle as earlier. Bob cannot know the value of the
bit he wants to know without knowing at least Ω(m) bits of the vector.

3.3 Gap Dot Product

Here, we are given a gap parameter ∆. Alice has a vector u ∈ Rm, ||u||2 = 1, and Bob has a vector
v ∈ Rm, ||v||2 = 1. We output 0 if u · v = 0 and 1 if u · v ≥ ∆. Note that the difficulty of this
problem is dependent upon the size of ∆. Namely, if ∆ > 1, it is trivial.

Theorem The randomized one-round communication complexity of GDP with gap ∆ = 1

(m/2)
1
2

is Ω(m).
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Proof We prove this via reduction to the balanced indexing problem. In particular, u = ∆x and
v = ei, where ei is the ith basis vector in the simplex. Then, we know that u · v = ∆xi. Thus, the
space bounds are the same.

3.4 Space Complexity of L2 Norm Estimation

Theorem Any streaming algorithm for estimating the L2 norm of an m− dimensional vector x
up to a factor of 1±∆, ∆ = c

m
1
2

, requires Ω(m) bits for some constant c > 0 (even if coordinates

of x have O(logm) bits).

Proof Assume we have an M -space streaming algorithm that computes (1 ±∆)||x||2. Then we
have an M−space streaming algorithm that, given a stream u · v, ||u||2 = ||v||2 = 1, computes
u · v ±O(∆), using the equality

||u− v||22 = ||u||22 + ||v||22 − 2u · v.

Then we have an M−bit one-round protocol that solves GDP with gap 1

(m/2)
1
2

(assuming c small

enough). Therefore, M = Ω(m).
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