Sketching Algorithms for Big Data Fall 2017

Lecture 2 — September 5, 2017
Prof. Jelani Nelson Scribe: Saketh Rama

1 Overview

In the last lecture, we surveyed the topics for this course, reviewed some probability theory, and
considered Morris’s algorithm for approximate counting with small registers.

In this lecture, we focus on another streaming problem — counting distinct elements in a stream.
We consider an idealized solution to this problem, then outline the non-idealized solution which
relies on k-wise independent hash functions.

2 Counting Distinct Elements in a Stream

More formally, consider a stream 1,142,143, ...,0, € {1,...,n}. We want our query() operation to
return the number of distinct integers in the stream.

2.1 Trivial Solutions

The most obvious solution is to maintain a bitvector of length n (n bits). Another option is to just
remember the stream (min(m,n)lgn bits).

2.2 Goal for Today

We can actually solve this in O(min(mlgmn,n) bits of memory, but it turns out (though we will
not prove this in lecture) that we need to require both approximate and randomized, else we need
linear memory.

For today, we want to output some answer A such that P(|A — Answer| > e - Answer) < 8. As usual,
the ¢ is the approximation factor and the § is the failure probability.

The first work to achieve this was [1]. We will do something similar, but not quite the same.

2.3 Idealized Solution

We will start with an idealized solution that uses real numbers — and therefore requires infinite
memory! However, let’s pretend that the real numbers don’t require infinite memory for now,
because the non-idealized solution is similar in spirit.

2.3.1 FM

Our basic algorithm (which we will call FM and subsequently upgrade into FM+ and FM+4+ as
in previous lecture) proceeds as follows:

1. Pick random hash function & : [n] — [0, 1].
2. Maintain in memory the smallest hash we’ve seen so far: X = min;estream h(7).

3. query(): output 1/X — 1.

For some intuition, say that ¢ is the number of distinct elements. We are partitioning the interval
[0,1] into bins of size 1/(¢ + 1). With this in mind, we claim the following:

1

Proof.
E[X] = /OOIP’(X > \)dA
0

= / P(Vi € stream, h(i) >) d\
0

:/OO I PBG) > dx
0
1

i€stream
—/ (1—X\)dx
0
1
Ct+1
O
We compute similarly to get the variance Var[X].
2
Claim 2. E[X?]= ————— .
aim 2. ELX = 4 e+ g)
Proof.
E[X?] = / P(X% > \)d\
0
= / P(X > V) dA
0
1
= / (1— VM) dA
0
L /i 9
=2 1—u)d =1-VA =
/0“< w) du o] (t+1)(t+2)
O

So
2 1 t
VarlX] = oy ey T e ey < B

2.3.2 FM+

We can upgrade our basic algorithm into FM+ by running it ¢ = % times in parallel to obtain
X1,...,Xq. Then query () should output

Claim 3. P (

1< 1 £
SNX - > <.
q; T t+1> "

Proof. By Chebyshev’s inequality,

q 1)
(o e =
9. t+1 t+1 (ti1)2

1

This gives us a linear dependence on the failure probability, but we want logarithmic.

2.3.3 FM++

To achieve this, we will define FM++ as running ¢ = O(lg %) independent copies of FM+, each
with n = 1/3. Then query() outputs the median across all FM+ estimates.

5

To analyze this, define indicator random variables Y7, ..., Y, where Y; is 1 iff the ith copy of FM+
failed to achieve a (1 4 €)-approximation (the event in the probability bound).

1.1
The new space for FM++ is now O <2 lg > .
€

2.4 Non-Idealized Solution

First, we need a pseudorandom hash function h. We will use k-wise independent hash func-
tions.

2.4.1 k-wise independent hash functions

Definition 4. A family H of functions mapping [a] into [b] is k-wise independent iff for all distinct
i1,...,0 € [a] and for all ji,...,ji € [b],

.)) . 1
P (B(i) = j1 A ARGiE) = i) = 5

Note that we can store h € H in memory with log, |H| bits.

One example of such a family H is the set of all functions mapping [a] to [b]. Then |H| = b*, and
so lg|H| = algb. A less trivial example is due to Carter and Wegman [2], where H is the set of
all degree-(k — 1) polynomials over F, such that a = b = ¢. Then |H| = ¢*, and so g |H| = klgq.
(This is not too hard to justify but we will not do so in lecture.)

Having seen these examples, we will just assume that we have access to some 2-wise independent
hash families, which will let us store in lgn bits.

2.4.2 Common Strategy: Geometric Sampling of Streams

Suppose we have a substitute that gives us as a 32-approximation to t. To get the (1 + ¢)-
approximation, we will use the common strategy of geometric sampling of streams. This is
important to understand because it is used fairly often in scenarios like this one.

First, let us consider the trivial solution (T'S): remember the first K distinct elements in the stream,
with K = ¢/e2. Our algorithm then composes these trivial solutions as follows:

1. Assume n is a power of 2.
2. Pick g : [n] — [n] from a 2-wise family.
3. init(): create lgn + 1 trivial solutions TSy, ..., TSk.

4. update(4): feed i to TSy gp(4(s))

t 1
5. query(): choose j such that oYEs ~ —. (We want this squared term due to Chebyshev’s
€
inequality.)

6. output: TS query().2i+1

Consider g : [16] — [16], say with ¢g(i) = 1010. In this case, the LSB index is 1 (hence the “+1” in
init()). For the LSB index to equal j, we need a “run” of j — 1 zeros from right to left.
Define a set of virtual streams wrapping the trivial solutions.

VS 0 — TS(]

VS Ign — TSy,

Fix some j € {0,...,1gn}. Let Z; be an indicator random variable for LSB(g(¢)) = j. Then the
number of distinct elements in VS j is >, i cam Zi = Z. Note that E[Z] = 54, and Var[}, Z;] =
>~ Var[Z;] due to the pairwise independence we have inherited from our 2-wise hash function. (In
fact, that is why we required the 2-wise independence in the first place, so that we can do this with

the variance later on.) We can then conclude that
t
ZV&I’[ZZ] < ﬁ = Q],
where we have denoted this last term as Q;.
Now we can apply Chebyshev with a 9/10 probability. Note that Z — Q; = O(,/Q;), so

Z=Q; +0(/Q;) = <liO <1Q>>Q]

We want the term inside the O-expression to be €. (Also, if j is too small, such that ¢/(2/*1) cannot
be approximately 1/e2 as needed, then just run the trivial solution alone and backoff to the above
algorithm if needed.)

Without being too pedantic here, just find the highest nonempty virtual stream. We can analyze
this to obtain the 90% probability stated at the outset.

How much space do we need? We need to store g (Ign), and also TS; for j € {0,...,lgn}. So in
total, we need O (6% Ag?n-lg %) bits.

2.5 State-of-the-Art Bounds in Literature

2.5.1 Lower Bound

1

1
The lower bound is 2 <2 lg
€ 1)

+1g n> bits. For those interested in the history of this lower bound,

see the following references:

1. [3]
2. [5]
3. [4]
4. [6]

2.5.2 TUpper Bound

First was the work on “HyperLoglLog”, which established

1
(@) <€21glgn—|—lgn> .

Forthcoming work from Blasiok (20187) has established

1 1

and so the problem is pretty much completely solved.

3

Future Work: Continuous Monitoring

A related area which may offer interesting opportunities is the continuous monitoring problem,
where we expect m queries and must maintain correctness throughout A basic union bound is a
trivial solution to this.

References

[1]

2]

Philippe Flajolet, G. Nigel Martin. Probabilistic Counting Algorithms for Data Base Appli-
cations. J. Comput. Syst. Sci., 31(2):182-209, 1985.

J. Lawrence Carter, Mark N. Wegman. Universal Classes of Hash Functions. Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, pp. 106-112, 1997.

Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the Fre-
quency Moments. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, pp. 20-29, 1996.

Piotr Indyk, David Woodruff. Optimal Approximations of the Frequency Moments of Data
Streams. Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Comput-
ing, pp. 202-208, 2005.

David Woodruff. Optimal Space Lower Bounds for All Frequency Moments. Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 167-175, 2004.

Thathachar Jayram, David Woodruff. The Data Stream Space Complexity of Cascaded Norms.
50th Annual IEEE Symposium on Foundations of Computer Science, pp. 765-774, 2009.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, Frédéric Meunier. Hyperloglog: The Analysis
of a Near-Optimal Cardinality Estimation Algorithm. AofA: Analysis of Algorithms, pp. 137—
156, 2007.

