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1 Overview

In the last lecture we saw an algorithm for graph sketching. In this lecture we consider streaming
algorithms for geometric data of other types for insertion-only streams. The general approach
to this type of problem is to construct a core-set, defined as a non-random sample of data that
represents the whole data set.
Today, we considered the following problems and algorithms:

• develop a constant factor approximation algorithm requiring O(
√
nk) space for the metric

k-median problem that utilized a “black-box” off-line algorithm.

• construct a core-set for the minimum enclosing ball problem.

2 Metric k-Median Problem

The metric k-median problem essentially asks us to cluster the points in the input and find k
medians such that a defined cost function is minimized. We are given the following:

• “Oracle” access to a metric function D(x, y) for points x, y in a metric space. This func-
tion satisfies standard properties of a metric function, including symmetry and the triangle
inequality.

• Stream of metric points p defining a set S, with |S| = n.

• Objective defined as:
D(p, C) = min

c∈C
D(p, c)

For |C| = k, cost(S,C) =
∑
p∈S

D(p, C)

cost(S,Q) = min
C⊆Q,
|C|=k

cost(S,C)

Our goal, then is to approximate cost(S, S) and report the medians.

Intuition: We don’t have much flexibility in what we store. We receive the points one after
the other, and we are trying to solve the problem for general metric spaces. We are pretty much
limited to storing a subset of points. All we have is the ability to calculate the distances between
two points, but we really don’t know anything else about the points. So let’s do that!
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2.1 Specification and Assumption

Specification We will develop a constant factor approximation algorithm that uses spaceO(
√
nk).

Recursively applying this algorithm gives us an algorithm that takes O(nαk). This approach is de-
scribed in Guha, Mishra, Motwani, and O’Callaghan [1].

Assumption We will assume that there exists an offline b−approximate algorithm that uses
linear space and works for the weighted version of the problem. (Note that we can show that
it is NP-hard to provide an exact solution to this problem.) Indeed, Arya et al.[2] show a (3 +
ε)−approximation algorithm for this problem, so this is not a futile assumption.

2.2 Algorithm

Intuition “Medians of weighted medians are approximate medians.”

Statement Our algorithm makes use of the b−approximate algorithm that requires linear space.
We begin by considering the stream in blocks S1, ..., SL, where L =

√
n
k . This means |Si| =

√
nk.

For each Si, we first find medians ci1, ..., c
i
k which b−approximate cost(Si, Si). Then, we compute mi

j

representing the number of points in Si that have been assigned to cij (we will refer to this as “Phase

1”). Now, we find the b−approximate k medians C ′ for the weighted set MC = {m1
1c

1
1, ...,m

L
k c
L
k }

(we will refer to this as “Phase 2”).

2.3 Proof

Intuition Apply triangle inequality many times!

Notation C = the optimum set of medians, such that cost(S,C) = cost(S, S).

We proceed by first bounding cost(S, S) and bounding the outcome of Phase 1 by this. Then,
we consider

Claim 1 For any Q, not necessarily a subset of S, cost(S, S) ≤ 2cost(S,Q).

Proof We can replace each median by the closest point in S. Then by the triangle inequality, as
we can see in Figure 2.3, each point is at most twice as far away from the orange point as from the
red point. Thus, cost(S, S) ≤ 2cost(S,Q)

Claim 2
∑

i cost(Si, Si) ≤ 2 · cost(S, S)
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Figure 1: The red point in the left half is the local median chosen by the algorithm. The closest
point to it is the one denoted in orange in the right half of the diagram. By triangle inequality,
each point is no more than twice as far away from the orange point as from the red point.

Proof From Claim 1, we have cost(Si, Si) ≤ 2 · cost(Si, Q). Therefore,∑
i

cost(Si, Si) ≤ 2 ·
∑
i

cost(Si, Si) ≤ 2 ·
∑
i

cost(Si, C) = 2 · cost(S, S)

.

Corollary The algorithm will find (nk)
1
2 medians MC with cost at most 2b cost(S, S).

With that, we have bounded the cost in Phase 1. Now, we consider Phase 2.

Claim 3 cost(MC,MC) ≤ 2(2b cost(S, S) + cost)

Proof We start by bounding cost(MC,C), where C is the optimal set of medians.

Notation

• q ∈MC a single point, possibly out of many duplicates

• p ∈ S assigned to q in the algorithm’s solution to MC

• c ∈ C optimal median to which p is assigned in the optimal solution.

We once again apply the triangle inequality; we can connect each q to c through p. Our total cost
breakdown is as follows:

• ∀q to p, the cost is 2b cost(S, S)

• ∀p to c, the cost is cost(S, S)
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Therefore, cost(MC,C) ≤ 2b cost(S, S)+cost(S, S), so cost(MC,MC) ≤ 2 cost(MC,C) ≤ 2(2b cost(S, S)+
cost(S, S)).

Altogether, in Phase 1, we connect the stream S to the set of intermediate medians MC, and the
cost is upper bounded by 2b cost(S, S), and in Phase 2, we connect MC to the set of calculated k
medians, an the cost here is upper bounded by b · 2(2b cost(S, S) + cost(S, S)). The total cost is

then ≤ 4b(b+ 1) cost(S, S) .

2.4 Comments

We can execute Phase 1 of this algorithm in a distributed fashion.

3 Core-Sets

3.1 Setup

We are given a set of points P , and our goal is to minimize a function Cp(o), where o is a
solution.

In this lecture, we consider the minimum enclosing ball problem. Our objective function is de-
fined Cp(o) = the smallest radius of a ball centered in o containing P .

Definition S ⊆ P is a (weak) c−core-set for P if, for any o in the space:

Cs(o) ≤ Cp(o) ≤ c · Cs(o) (1)

Assuming monotonicity, CA(o) ≤ CB(o) if A ⊆ B. This means that the first inequality in 1 is
trivially true.

3.2 Core-Set for Minimum Enclosing Ball (MEB)

Intuition Remembering multiple points along the same vector is redundant, since we only need
to know how far the farthest one is. We compute extremal points in “all” directions.

We construct a core-set for MEB as follows:

• choose “densely” spaced directions v1, ..., vk; i.e., for any u, there is a vi such that

angle(u, vi) ≤ α

• for each direction, maintain the extremal point.
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In Rd, k = O( 1
α)d−1 directions suffice. We claim that the resulting set is a 1 + O(α2)−core-set for

MEB. This then gives us a 1+O(ε)-approximate streaming algorithm for MEB storing O(1/(ε
d−1
2 ))

points.

3.3 Proof

Consider the smallest ball B containing S centered at o. Assume the radius is 1. We must show
that:

Cp(o) ≤ (1 +O(α2))Cs(o)

i.e., that the points in P − S (say q) cannot be too far from B. We have

cos
(α

2

)
≤ 1

1 + ε
≈ 1− ε.

Using a Taylor expansion, we know that cos(α) ≈ 1−α2, so ε = O(α2). Thus, we get a 1+O(ε)-core

set for MEB of size O(1/(ε
d−1
2 )).

References

[1] Sudipto Guha, Nina Mishra, Rajeev Motwani, Liadan O’Callaghan. Clustering Data Streams.
Proceedings 41st Annual Symposium on Foundations of Computer Science, 359–366,2000.

[2] Local search heuristic for k-median and facility location problems. Proceedings of the thirty-
third annual ACM symposium on Theory of computing, 21-29,2001.

5


