
Sketching Algorithms for Big Data Fall 2017

Lecture 18 — November 2, 2017

Prof. Piotr Indyk Scribe: Sebastian Claici

1 Recap

Recall the general framework of sketching:

• Maintain Ax under increments/decrements of coordinates of x, where x is n-dimensional.

• Estimate the desired function from the sketch Ax.

These algorithms are typically, though not always, randomized and approximate.

Today we will see this approach applied to two new problems: sampling and graph connectivity.

2 Lp Sampling

For p > 0 and given ε > 0 and constant c, return l ∈ [n] and Z where

Pr[l = i] = (1± ε) |xi|
p

‖x‖pp
+ n−c

Pr[Z = (1± ε)|xl|] > 1− n−c.

Specifically, we will look at L0 sampling, which is the problem of uniformly sampling from a the
support of a vector x. Formally

Pr[l = i] = (1± ε) |xi|
0

‖x‖0
+ n−c

with the convention that |0|0 = 0. We will give an algorithm to solve this problem for ε = 0 using
only O(log3 n) bits.

The only assumption we make is that the elements of the vector x are integers in {−nO(1), . . . , nO(1)}.

2.1 L0 Sampling Sketch

The algorithm is simple to implement, and follows ideas shown in the first few lectures (see e.g.
lectures on Count sketches).

1

Algorithm

• For j ∈ [log n] we will maintain hash functions hj : [n]→ {0, . . . , 2j − 1}.

• For each j maintain:

– Dj = (1± 0.1)‖xSj‖0 for Sj = i : hj(i) = 0 (with failure probability n−O(1)),

– Cj =
∑

i∈Sj
xi

– Tj =
∑

i∈Sj
ixi.

We maintain Dj , Cj , and Tj to be able to estimate the index and value of a support point if
Dj = 1± 0.1, i.e. if our hash function isolates a single support point. Namely, an estimate is given
by

• Select the smallest j∗ such that Dj∗ = 1± 0.1 (if such a j∗ exists),

• Output Tj∗/Cj∗ = j∗.

To prove that this algorithm will produce a sample from the support of x we need to show that
there is at least one j such that the set Sj contains exactly one non-zero element of x with at least
some constant probability P > 0.

Claim: For j = 1 + log ‖x‖0, the set Sj contains exactly one non-zero element i = Ti/Ci with at
least some constant probability P > 0.

Proof. Recall that |Sj | = 2j = 21+log ‖x‖0 ≈ ‖x‖0. Let T = supp(x), |T | = ‖x‖0. Then

Pr[|T ∩ Sj | = 1] =
∑
i∈T

Pr[i ∈ Sj and i′ /∈ Sj ,∀i′ ∈ T, i′ 6= i]

=
∑
i∈T

1

|T |

(
1− 1

|T |

)|T |−1
=

(
1− 1

|T |

)|T |−1
≈ 1

e

where the first equality follows from the fact that the events are disjoint, the second from the fact
that the events i ∈ Sj and i′ /∈ Sj are independent are uniform by the properties of the hash
function hj .

This shows that the set Sj contains exactly one element with constant probability approximately
1/e.

Assuming no failures, we obtain an algorithm that samples i uniformly at random from the support
of x. We can repeat this algorithm O(log n) times to ensure that some i is picked with probability
1− n−O(1).

Two important notes on the algorithm:

2

• First note that maintaining Dj efficiently can be done using a CountMin approach even with
deletions allowed (see Problem 2 in the first problem set).

• Second, while we assumed that the functions hj were fully random, the same approach can
be shown to work with k-wise independent hash functions.

The total space complexity of the algorithm is O(log3 n) or O(log4 n) if repeated, since Tj and Cj

require O(log n) space, Dj requires O(log2 n) space (to ensure low failure probability), and we need
to maintain Tj , Cj , and Dj for log n indices.

3 Graph Sketching

We will now turn our attention to a seemingly unrelated problem that will make heavy use of the
ideas for L0 sampling given in §2.

We are given a dynamic graph G = (V,E) with V = {1, . . . , n} and a stream of insertions and
deletions of edges. We are asked to maintain the connected components of G.

It’s obvious that any algorithm we propose will require space at least n since each vertex will have
to have a component assigned to it and there are n vertices. We will show that we only need to
use O(n logO(1) n) bits which is significantly less than the Õ(n2) bits required to store the edges.

First, a warmup. If the stream contains only insertions, then we only ever need to store the current
component of each vertex and merge components when edges are added that bridge between two
different components. This requires only O(n) space and can be done efficiently using e.g. a
disjoint-set data structure.

However, allowing deletions significantly changes the problem. We need two ingredients for a
sketching algorithm.

The first is a fully offline “parallel” algorithm for connected components.

3.1 Spanning Forest Algorithm

This algorithm determines the connected components of a graph in a “parallel”-like fashion.

Algorithm

• Initially each node is its own component.

• Repeat until convergence (O(log n) times):

– Each connected component picks an incident edge if one exists.

– All connected components that are connected by newly picked edges are merged.

Claim: Let cci be the number of connected components before step i and cc be the correct number
of connected components. Then

(cci+1 − cc) ≤ (cci − cc)/2.

3

This implies that the algorithm terminates in at most O(log n) steps.

Proof. Proof sketch. Consider two components at step i that have at least an edge between them in
the graph. When components are merged, at worst every two components will merge into a single
one, thus halving the number of “false” connected components.

The second ingredient required is a vector representation for a graph.

3.2 Node Neighbor Representation

For a node i, let Xi be a vector indexed by node pairs, Xi ∈ {−1, 0, 1}|E| such that

• For each edge {i, j}, set Xi[i, j] = 1 if j > i and Xi[i, j] = −1 if j < i (note that the subscript
i and index i are the same).

• All other entries are 0.

1

2

3

4

5

For example, we give the node neighbor representation of the graph above:

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

X1 = 1 1 0 0 0 0 0 0 0 0
X2 = -1 0 0 0 1 1 0 0 0 0

The key insight that we will use from this representation is that for any subset of nodes S ⊂ V we
have

Supp

(∑
i∈S

Xi

)
= E(S, V \ S).

With these two ingredients in place let’s now look at the graph sketching algorithm itself.

3.3 Algorithm (Ahn-Guha-McGregor ’12)

The algorithm relies on the L0 sampling algorithm we saw in §2 and is similar in spirit to the
spanning forest algorithm of §3.1.

4

Algorithm

• Maintain L0 sampling sketches AsXi for each Xi, and all s ∈ {1, . . . , O(log n)}.

• Initially each node forms its own component.

• For s = 1 to O(log n)

– For each component C, compute

As

(∑
i∈C

Xi

)
=
∑
i∈C

AsXi.

– Use this sketch to sample an edge in E(C, V \ C) if one exists.

– Merge connected components that are connected by the picked edges.

The total space requirement here is O(n logO(1) n) since we have to store a sketch for each of the n
nodes, and each sketch takes O(logO(1) n) space per §2.

4 History of Lp Sampling

L0 sampling was developed concurrently and independently in [CMR05] and [FIS08] with essentially
the bound presented in lecture. A better bound of O(log2 n log(1/δ)) for failure probability δ
was given in [JST11] with a lower bound of log2 n for δ = O(1). Generalizations were shown in
[KNP+17]. An algorithm for Lp sampling is shown in [MW10].

References

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems, pages 5–14. ACM, 2012.

[CMR05] Graham Cormode, S. Muthukrishnan, and Irina Rozenbaum. Summarizing and mining
inverse distributions on data streams via dynamic inverse sampling. In Proceedings of
the 31st International Conference on Very Large Data Bases, VLDB ’05, pages 25–36.
VLDB Endowment, 2005.

[FIS08] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams
and applications. International Journal of Computational Geometry and Applications,
18(01n02):3–28, 2008.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, find-
ing duplicates in streams, and related problems. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 49–
58. ACM, 2011.

5

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P Woodruff,
and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers
and finding duplicates in streams. arXiv preprint arXiv:1704.00633, 2017.

[MW10] Morteza Monemizadeh and David P Woodruff. 1-pass relative-error lp-sampling with
applications. In Proceedings of the twenty-first annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 1143–1160. SIAM, 2010.

6

