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1 Overview

In the last lecture we constructed sparse RIP1 matrix via expander and showed that it provides
sparse recovery. In this lecture we are going to study a new topic: sparse Fourier transform (SFT).

The goal of sparse Fourier transform is finding a fast way to approximate the Fourier coefficients
of a sparse signal and the algorithm can be randomized. We will start with some backgrounds in
discrete Fourier transform in Section 2 and then move on to sparse Fourier transform in Section 3.
Historical development will be covered in Section 4.

2 Discrete Fourier transform

In this section, we are going to briefly review the discrete Fourier transform (DFT). In the following,
we assume the parameter n to be some power of 2, say n = 2`. Also, note that most of the indexes
in this lecture start from 0 instead of 1.

The input here is a length n sequence of discrete signal a = (a0, a1, . . . , an−1) ∈ Cn and the goal is to
compute its Fourier coefficients â = (â0, â1, . . . , ân−1) defined as follows. For any u = 0, 1, . . . , n−1,

âu =
1

n

n−1∑
j=0

aje
− 2πi

n
uj , (1)

where i =
√
−1. For convenience, we denote ω = ωn = e

2πi
n and (1) becomes âu = 1

n

∑n−1
j=0 ajω

−uj .
When one remove the minus sign in the exponent of ω, we call it inverse Fourier transform.

Remark 1. The scaling term in (1) has three different conventions: 1/n, 1/
√
n, and 1. Basically

it does not matter since here we only care about the largest coefficient.

Remark 2. Intuitively, one can think of the set {ωu : u = 0, 1, . . . , n− 1} as an ε-net for the unit
sphere on the complex space C.

For convenience, one can write the DFT and the inverse Fourier transform into matrix form.
Namely, we have â = Fa and a = F−1â for some matrices F, F−1 ∈ Cn×n defined as follows. For
any u, j = 0, 1, . . . , n− 1,

Fuj =
1

n
ω−uj and F−1ju = ωuj .

There are two important properties about the DFT: the orthogonality and the time-shift/phase-shift
theorem.
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Fact 3 (orthogonality). Both F and F−1 are orthogonal up to certain scaling. Specifically, for any
x ∈ Cn, we have

‖Fx‖22 =
1

n
‖x‖22 and ‖F−1x‖ = n‖x‖22.

Theorem 4 (time-shift/phase-shift). Let a, â be defined as above and a′, â′ be new signal and the
corresponding Fourier coefficients. For any b = 0, 1, . . . , n− 1, we have

∀j = 0, 1, . . . , n− 1, aj = ajω
bj ⇔ ∀u = 0, 1, . . . , n− 1, â′u = âu−b.

With the above definition and properties of DFT, there are two natural questions as follows.

Question: What are the applications of DFT?

One of the main application of DFT is the filtering techniques in signal/image processing. For
instance, given a large image, one first apply DFT and get its Fourier coefficients. Next, throw
away the least 90% of Fourier coefficients and apply the inverse Fourier transform. The resulting
image is almost the same as the original image with only some blurred effects. See Figure 1 for
example.

Figure 1: Applying DFT filtering on the photos of the two lecturers. The photos on the left are the
original and the photos on the right are after filtering. One can see that the photos after filtering
are a little blurred.

Question: How fast can we implement DFT?

This is the main focus for this course. At first glance, one can immediately see that a naive matrix-
vector multiplication can give a O(n2) time algorithm for DFT. Surprisingly, the fast Fourier
transform (FFT) algorithm achieves O(n log n) computing time, which is desired for practical usage.
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In this lecture, we consider the case where the input signal is k-sparse in the sense that there are
k dominant Fourier coefficients and the region log n < k � n is of interest. We call this sparse
Fourier transform.

3 Sparse Fourier transform

In this section, we are going to study the sparse Fourier transform. We will setup the notations
and goal in Section 3.1. In Section 3.2, we will first perform a sanity check on whether it is possible
to achieve our goal. Finally, in Section 3.3 we will consider the case where the sparsity is 1 and
give a fast algorithm.

3.1 Setup

Let a ∈ Cn be the input signal and â be its Fourier coefficients defined in (1). For any k = 1, 2, . . . , n,
define â(k) to be the vector that contains the largest1 k entries in â. The goal of the sparse Fourier
transform (SFT) is to find â′ such that

‖â− â′‖2 ≤ C · ‖â− â(k)‖2, (2)

where C > 0 is some constant.

The final goal is to get a O(k log n) time randomized algorithm. Note that, when k is much smaller
than n, the algorithm might not even read the whole input signal!

3.2 Sanity check: `1 guarantee

Before we see the algorithm, let’s have a sanity check by designing an algorithm with `1 guarantee
instead of the `2 guarantee in (2). This can actually be achieved by what we learned in the previous
lecture.

From Lecture 9, we know that the sub-matrix of the inverse Fourier matrix F−1 is RIP . Concretely,
let S ⊆ [n] and |S| = O(ε−2k log4 n), A = F−1S satisfies the (ε, O(k))-RIP . See the seminal work
by Candés and Tao [CT06] for details. Also, from Lecture 13, Jelani showed that if A satisfies
RIP , them one can recover an approximation of x given Ax via `1 minimization. Here, we think
of x as the Fourier coefficients â. Thus, Ax = F−1S â, which is the input signal corresponding to the
position at S. That is, one only needs to read |S| = O(ε−2k log4 n) many samples from the input
signal to recover â. However, the running time of this algorithm is polynomial in n.

3.3 Warm-up: k = 1

As a warm-up, in this lecture, we are going to study SFT algorithm where there is only one dominant
Fourier coefficient. Concretely, we consider two cases.

1In absolute value.
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• Noiseless case: There exists u = 0, 1, . . . , n− 1 such that for any u′ 6= u, âu′ = 0. In this case,
our goal is to find u and approximate âu.

• Noisy case: The goal is to find â′ such that ‖â − â′‖2 ≤ C · ‖â − â(1)‖2 for some constant
C > 0.

3.3.1 Noiseless case

The idea is based on the following observation.

Observation 5. For any j = 0, 1, . . . , n−1, we have aj = âuω
uj by inverse Fourier transform and

the fact that there is only one non-zero Fourier coefficient.

As a result, by sampling a0 and a1, one can recover u and âu as follows.

âu = a0 and u = n× the angle between
a1
a0

and the real line. (3)

The correctness of the algorithm simply follows from the fact that a0 = âu and a1
a0

= ωu. This
algorithm is called the two-point sampling and it only takes constant time. However, there are
two issues for this algorithm.

• It does not scale up well with k since we need to solve a size k linear system, which in general
does not have a Õ(k) algorithm.

• This algorithm cannot handle any noise.

In the rest of this lecture, we are going to solve the second problem while the first one will be
partially explained in the next lecture.

Remark 6. The two-point sampling algorithm is related to OFDM, Pronys method, and matrix
pencil.

3.3.2 Noisy case

Recall that our goal is to find â′ such that ‖â − â′‖2 ≤ C · ‖â − â(1)‖2 for some C > 0. Note that
this is only meaningful when C · ‖â− â(1)‖2 < ‖â‖2. Otherwise, outputting â′ = 0 suffices. This is
equivalent by assuming

∑
u′ 6=u â

2
u′ < ε · â2u for some small ε = ε(C).

In the following, we will start with an algorithm for the noiseless case first with a more robust
behavior. Then, we will show that in fact it can handle noisy case with constant probability. As
a remark in the beginning, the algorithm is combinatorial, which is different from what we saw
before. The main idea is to find u bit by bit and then estimate âu in the end.

Bit 0 The idea follows from the following observation in Figure 2. When u is even, then an/2 = 1.
When u is odd, an/2 = −1.
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Figure 2: In this example, we pick n = 64. In (a), â1 = 1. In (b), â2 = 1. In (c), â9 = 1. In (d),
â10 = 1. The red star is the point u = n/2.

This observation can be explained by the following analysis. Write u = 2v + b where v is some
positive integer and b = 0, 1. We have an/2 = âuω

un/2 = âuω
vn+bn/2. As ωvn = e2πiv = 1 for any

integer v and ωn/2 = eπi = −1, we have an/2 = âuω
bn/2 = âu(−1)b.

With the above analysis, the following test can help us find out the least significant bit of u. Denote
the least significant bit of u as b0, we have

b0 = 0⇔ |a0 − an/2| < |a0 + an/2|.

This test works well in the noiseless case since if b0 = 0, we have a0 = an/2 and if b0 = 1, we have
a0 = −an/2. However, what if the noise concentrate on a0 and an/2 in the noisy case? A simple fix
is randomly pick r = 0, 1, . . . , n− 1 and do the following test.

b0 = 0⇔ |ar − ar+n/2| < |ar + ar+n/2|.

For convenience, the r + n/2 in the above equation is actually r + n/2 modulo n. Observe that
ar+n/2 = âuω

r+n/2 = arω
n/2 = ar(−1)b. Thus, this new randomized test works for the noiseless

case. See Figure 3 for geometric intuition. We will go back to the noisy analysis later.

Note that in this step we sample two points in the signal and the computation time is constant.

Bit 1 and beyond Here we describe the algorithm of estimating the second bit and the rest
basically follows the same idea. First, we assume b0 = 0 without loss of generality. The reason is
that if b0 = 1, we consider shifted signal a′ defined as a′j = ajω

j for any j = 0, 1, . . . , n− 1. From
the time-shift/phase-shift theorem, we have â′u = âu−1 and thus yield a signal with least significant
bit being 0.

Next, as u = 2v, we can think of it as u = 4v′ + b1 where b1 = 0, 1. By randomly pick r =
0, 1, . . . , n− 1, we have the following test for b1.

b1 = 0⇔ |ar − ar+n/4| < |ar + ar+n/4|.

Similarly, the process can be repeated for the rest of the bits of u. Specifically, for the ith least
significant bit of u, denoted as bi−1, we have the following test. Randomly pick r = 0, 1, . . . , n− 1,

bi−1 = 0⇔ |ar − ar+n/2i | < |ar + ar+n/2i |.
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Figure 3: Geometric intuition for the test. The blue vector is ar and the orange vector is ar+n/2.
The yellow vector is ar + ar+n/1 and the purple vector is ar − ar+n/2. (a) is the case where b = 0
and (b) is the case where b = 1.

Note that the number of samples being used is 2 log n and the total computation time is O(log n).

Dealing with noise So far we have seen the algorithm and the analysis for noiseless case. Now,
we are going to show that the algorithm works for noisy case with constant probability. Specifically,
let â′ denote the output, we want to show that for probability at least 2/3, ‖â− â′‖2 ≤ ε‖â− â(1)‖2.

To start with, rewrite the input signal as follows. For each j = 0, 1, . . . , n− 1,

aj = âuω
uj +

∑
u′ 6=u

âuω
uj′ = âuω

uj + µj . (4)

Observe that a = F−1â(1) +µ where the (j+ 1)th entry of µ is µj for each j = 0, 1, . . . , n− 1. That
is, from the orthogonality property of DFT, we have

n−1∑
j=0

µ2j = ‖µ‖22 = ‖F−1(â− â(1))‖22 = n‖â− â(1)‖22 = n
∑
u′ 6=u

â2u′ . (5)

Recall that we query 2 log n points from the input signal in the algorithm. Denote these points
as j1,1, j1,2, j2,1, j2,2 . . . , jlogn,1, jlogn,2. The following claim provides a sufficient condition for the
algorithm to correctly estimate u’s bits.

Claim 7. For any t = 1, 2, . . . , log n, as long as 2(|µt,1|+ |µt,2|) < |âu|, then the estimation of the
tth bit of u is correct.

Proof. Recall that the algorithm estimate the tth bit by comparing |ajt,1 − ajt,2 | and |ajt,1 + ajt,2 |.
We have

ajt,1 − ajt,2 = âu(ωjt,1 − ωjt,2) + (µjt,1 − µjt,2),

ajt,1 + ajt,2 = âu(ωjt,1 + ωjt,2) + (µjt,1 + µjt,2).
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As we discussed before, |ωjt,1−ωjt,2 | will either be 0 or 2. As a result, as long as |µjt,1−µjt,2 |, |µjt,1 +
µjt,2 | ≤ |µjt,1 |+ |µjt,2 | ≤ 2|âu|, the comparison between |ajt,1−ajt,2 | and |ajt,1 +ajt,2 | will be correct.
That is, the estimation of the tth bit is correct.

With Claim 7, now it suffices to show that the probability of 2(|µt,1| + |µt,2|) ≥ |âu| is small. We
show this by the standard Markov+Union+Majority vote argument. Concretely, first compute the
expectation of µ2jt . As jt,1, jt,2 are uniformly distributed in 0, 1, . . . , n− 1 for any t = 1, 2, . . . , n, we
have

E[µ2jt,1 ] = E[µ2jt,2 ] =
∑
u′ 6=u

â2u′ . (6)

By Markov’s inequality, for any t = 1, 2, . . . , n and b = 1, 2,

P[|µjt,b | >
|âu|
4

] = P[|µjt,b |
2 >
|âu|2

16
] ≤

16
∑

u′ 6=u â
2
u′

â2u
≤ 16ε, (7)

where the last inequality follows the assumption in the beginning of this subsubsection. By picking
ε small enough such that 32ε < 1/3, we have that the failure probability of estimating the tth is
at most 1/3. To amplify the probability, repeat the test for each bit by O(log log n) times and do
the majority vote. This will make the failure probability of each bit becomes at most 1/3 log n and
thus after union bound, the failure probability of the algorithm is at most 1/3. Note that 1/3 is
just an arbitrary constant.

Estimating âu Previously, we show that with probability at least 2/3, the output is u and
|µjt,1 |, |µjt,1 | ≤ |âu|/4 for all t = 1, 2, . . . , n. As the algorithm approximates |âu| with ajt,b/ω

ujt,b =
âu + µjt,b/ω

ujt,b for any t = 1, 2, . . . , n and b = 1, 2. The error is |µjt,b/ωujt,b | = |µjt,b | ≤ |âu|/4.
That is, the algorithm is a 1/4-approximation for âu. By tuning the parameter and some majority
vote argument, one can improve this approximation ratio.

To sum up, the algorithm works as âu has constant fraction of mass in â with time complexity
O(log n log log n).

4 History

Finally, let’s take a look at the history of Fourier transform to wrap up this lecture.

• Goldreich and Levin [GL89] and Kushilevitz and Mansour [KM91] started the study of sub-
linear sparse Fourier algorithms for the Hadamard transform.

• Mansour [Man92] gave a poly(k, log n) time assuming the entries of the signal are integers
from −poly(n) to poly(n).

• Gilbert, Guha, Indyk, Muthukrishnan, and Strauss [GGIMS02] gave a O(k2poly(log n)) time
algorithm.

• Gilbert, Muthukrishnan, and Strauss [GMS05] gave a O(kpoly(log n)) time algorithm.
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• Hassanieh, Indyk, Katabi, and Price [HIKP12] gave a O(k log n log(n/k)) time algorithm.
The run time is O(k log n) if we consider noiseless case.

There are also several works on deterministic Fourier algorithm and closing the gap between ran-
domized and deterministic sparse Fourier transform remains an open problem.

5 Next lecture

Next time we are going to study algorithms for k-sparse Fourier transform under two assumptions:
(i) noiseless (ii) the peaks of the Fourier coefficients are uniformly distributed.
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