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1 Overview

In the past two lectures, we covered two algorithms for compressed sensing, Basis Pursuit (BP) and
Iterative hard thresholding (ITH). Recall that in compressed sensing, we want to recover x ∈ Rn
from Ax for some sketch matrix A ∈ Rm×n. We showed that if A is (ε, Ck) RIP, then one can
recover x̂ s.t.

‖x̂-x‖1 ≤ c(k) min
y is k−sparse

‖y-x‖1

Our goal is to have a good compression while be able to recover x.

One question to ask is which kind of sketch matrix works the best. Intuitively, the trade off
between dense vs sparse matrices are as follows: While dense matrix gives shorter sketches (smaller
m), sparse matrix is more computationally efficient. In this lecture we focus on construction of
sketch matrices that balance between the two cases.

2 RIP1 matrix

Examples of dense matrix that satisfies (c, k)−RIP property are Gaussian/Bernoulli matrices with
m = O(k log(nk )) and random Fourier matrices with m = O(k logO(1)n).

For sparse matrices: It was shown in [2] that all sparse binary matrix that satisfies RIP must has
m = Ω(k2).

To get around this, we look at RIP property w.r.t. l1 norm instead of l2 norm. Turns out that
sketch matrices satisfies RIP1 is enough for BP to approximate the original input x.

Definition 1 (RIP1). A matrix A is (ε, k)-RIP1 if for all k sparse vector v,

(1− ε) ‖v‖1 ≤ ‖Av‖1 ≤ (1 + ε) ‖v‖1

3 Construction of RIP1 matrix

In this section we give a construction of sparse binary matrix satisfies RIP1 property. The idea is
to view A as the (bi)adjancy matrix of a bipartite graph. If the underlying graph is an unbalanced
expander, then A satisfies RIP1.

Definition 2 (Expander). A (l, ε)-unbalanced expander is a bipartite simple graph G = (U, V,E),
|U | = n, |V | = m, with left degree d such that for any X ⊂ U with |X| ≤ l, the set of neighbors
N(X) of X has size |N(X)| ≥ (1− ε)d|X|.
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From A ∈ {0, 1}m×n, one can construct a G = (U, V,E) as follows: let U = [n], V = [m].
E = {(i, j) : i ∈ U, j ∈ V,Aj,i = 1}.

Here we assume each column of A has d 1s or ∀i ∈ U , deg(i) = d.

Theorem 3 ([1]). For A ∈ {0, 1}m×n, if the underlying bipartite graph is a (k, d(1− ε
2)) expander,

then for all k sparse vector v

d(1− ε) ‖v‖1 ≤ ‖Av‖1 ≤ d ‖v‖1

(The other direction is also true: Given a binary sparse matrix satisfies RIP1, the underlying graph
is an expander.)

Proof. ‖Av‖1 ≤ d ‖v‖1: for any v ∈ Rn, think of Av as for each i ∈ U , send vi → j if (i, j) ∈ E,
each vi is seen d times from V .

‖Av‖1 =
∑
i

|(Av)i| ≤
∑
i

|
∑

j:(i,j)∈E

vj | ≤
∑

(i,j)∈E

|vi| = d ‖v‖1

d(1 − ε) ‖v‖1 ≤ ‖Av‖1: Let v be some k sparse vector. WLOG, sort the corrdinates of v s.t.
v1 ≥ v2 ≥ · · · ≥ vk > vk+1 = · · · = vn = 0.

Sort e = (i, j) in lexicographic order. Let r(e) = 1 if e is not seen before and r(e) = −1 if ∃i′ < i
s.t. (i′, j) ∈ E. The inequality follows from the following two claims.

Claim 4. ‖Av‖1 ≥
∑

(i,j)=e∈E r(e)|vi|

Claim 5.
∑

(i,j)=e∈E r(e)|vi| ≥ (1− ε)d ‖v‖1

Combine claim 4, 5 completes the proof.

proof of claim 4. For j ∈ U , if |N(j)| = 1, then |(Av)j | = |vN(j)|. Otherwise, let aj = argmax{i :
i ∈ N(j)}. By construction, |vaj | ≥ |vi| for all other i ∈ N(j). We also get |(Av)j | ≥ |vaj | −∑

i∈N(j),i 6=aj |vi| =
∑

i∈N(j) |vi|r(e). This completes the proof.

proof of claim 5. Since the underlying graph is (k, d(1− ε
2)) expander, then for any i, i′ ∈ {1, · · · , k},

|N(i) ∩N(i′)| ≤ εd. By definition, for e = (i, j), r(e) = −1 iff ∃i′ < i s.t. (i′, j) ∈ E, let r′(e) = −1
for the top εd neighbors of i for i > 1, observe that∑

(i,j)=e∈E

r(e)|vi| ≥
∑

(i,j)=e∈E

r′(e)|vi| ≥ d ‖v‖1−εd ‖v‖1

4 RIP1 + Expander allows l1 minimization

Recall that in Lecture 13, we showed if all vector in the null space of A doesn’t have mass con-
centrated on some small subset of coordinate (null space condition), then l1 minimization gives
good error guarantee. In this section, we will show that matrix satisfies RIP1 property also satisfies
the null space condition.
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Definition 6 (null space condition). A satisfies the null space property of order k if for any η s.t.
Aη = 0 and S ⊂ [n] s.t. |S| ≤ k,

‖ηS‖1 ≤ C(ε) ‖η‖1

4.1 Original notes from lecture

We also define E(X : Y ) = E ∩ (X × Y ) to be the set of edges between the sets X and Y .

The following well-known proposition can be shown using Chernoff bounds.

Claim 7. For any n/2 ≥ l ≥ 1, ε > 0, there exists a (l, ε)-unbalanced expander with left degree
d = O(log(n/l)/ε) and right set size O(ld/ε) = O(l log(n/l)/ε2).

Now we show that the expander matrices have the null-space property. Let A be an m×n adjacency
matrix of an unbalanced (2k, ε)-expander G with left degree d. Let α(ε) = (2ε)/(1− 2ε).

Lemma 8. Consider any η ∈ Rn such that Aη = 0, and let S be any set of k coordinates of η.
Then we have

‖ηS‖1 ≤ α(ε)‖η‖1

Proof. Without loss of generality, we can assume that S consists of the largest (in magnitude)
coefficients of η. We partition coordinates into sets S0, S1, S2, . . . St, such that (i) the coordinates
in the set Sl are not-larger (in magnitude) than the coordinates in the set Sl−1, l ≥ 1, and (ii) all
sets but St have size k. Therefore, S0 = S. Let A′ be a submatrix of A containing rows from N(S).

The basic idea of the proof is as follows. Assume (by contradiction) that ‖ηS‖1 is ”large” compared
to ‖η‖1 , which (by RIP1) implies that ‖A′ηS‖1 is ”large”. Since 0 = ‖A′η‖1 = ‖A′ηS +A′η−S‖1, it
follows that ‖A′η−S‖1 must be ”large”, to cancel the contribution of A′ηS . The only way for this to
happen though is if there are many edges in G from −S to N(S). This however would mean that
the neighborhoods of S and blocks Si have large overlaps, which cannot happen since the graph is
an expander.

The formal proof follows.

From the RIP-1 property we know that ‖A′ηS‖1 = ‖AηS‖1 ≥ d(1 − 2ε)‖ηS‖1. At the same time,
we know that ‖A′η‖1 = 0. Therefore

0 = ‖A′η‖1 ≥ ‖A′ηS‖1 −
∑
l≥1

∑
(i,j)∈E,i∈Sl,j∈N(S)

|ηi|

≥ d(1− 2ε)‖ηS‖1 −
∑
l≥1
|E(Sl : N(S))| min

i∈Sl−1

|ηi|

≥ d(1− 2ε)‖ηS‖1 −
∑
l≥1
|E(Sl : N(S))| · ‖ηSl−1

‖1/k

From the expansion properties of G it follows that, for l ≥ 1, we have |N(S∪Sl)| ≥ d(1− ε)|S∪Sl|.
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It follows that at most dε2k edges can cross from Sl to N(S), and therefore

0 ≥ d(1− 2ε)‖ηS‖1 −
∑
l≥1
|E(Sl : N(S))| · ‖ηSl−1

‖1/k

≥ d(1− 2ε)‖ηS‖1 − dε2k
∑
l≥1
‖ηSl−1

‖1/k

≥ d(1− 2ε)‖ηS‖1 − 2dε‖η‖1

It follows that d(1− 2ε)‖ηS‖1 ≤ 2dε‖η‖1, and thus ‖ηS‖1 ≤ (2ε)/(1− 2ε)‖η‖1.
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