
Sketching Algorithms for Big Data Fall 2017

Lecture 14 — October 19, 2017

Prof. Jelani Nelson Scribe: Ali Vakilian

1 Overview

In the last lecture we started the topic of Compressive Sensing and in particular we described the
Basis Pursuit (BP) algorithm. In compressive sensing, given measurement matrix Π ∈ Rm×n and
measurement vector y = Πx, the goal is to recover the vector x which is known to be either exactly
or nearly k-sparse.

Basis Pursuit(Π, y):

Min ||z||1
s.t. Πz = y

Remark 1. More generally, we can consider the case in which there is some post measurement
noise e such that ||e||2 ≤ α. Then, we can adjust the linear program as follows:

Basis Pursuit(Π, y, α):

Min ||z||1
s.t. ||Πz − y||2 ≤ α

The main result we proved in the last lecture is the following.

Theorem 2. If x̂ is output of Basis Pursuit(Π, y) and Π satisfies (ε, Ck)-RIP for sufficiently
small constant ε > 0, and sufficiently large constant C > 1, then

||x̂− x||2 ≤ O(
1√
k

).||xtail(k)||1 (1)

Corollary 3. If x is actually k-sparse, the is no error in the output of the recovery; Basis
Pursuit(Π, y) returns x.

Though the BP works with a single measurement matrix Π that works for (recovering) all nearly
k-sparse vectors x, it is not fast enough. The reason is that solving LP generally requires polynomial
time in n and is not very fast.

In this lecture we describe an iterative fast approach for the sparse recovery task that has a running
time which is nearly linear (if the measurement matrix supports nearly linear time matrix-vector
multiplication). This approach was first used by Needell and Tropp [NT08] (CoSAMP). The algo-
rithm we cover here is called Iterative Hard Thresholding (IHT) and it is due to Blumensath
and Davies [BD09]

1

2 Iterative Hard Thresholding (IHT) for Compressed Sensing

Roughly speaking, the algorithm starts with some guess on vector x (which is the all zero vector)
and goes through T iterations of updating the vector. The goal is to show that by these updates, the
sequence converges to the true x. More formally, assuming x[1], · · · , x[T] are the vectors produced
over the T iterations, here is the main theorem of IHT:

Theorem 4 ([BD09]). If Π satisfies (ε, 3k)-RIP for ε < 1
4
√

2
, then ∀ T ≥ 1

||x[T+1] − x||2 . 2−T ||x||2 + ||xtail(k)||2 +
1√
k
||xtail(k)||1 + ||e||2 (2)

Comparing to the guarantee of BP approach (Theorem 2), in (2) we have three extra terms:
2−T ||x||2, ||xtail(k)||2 and ||e||2. Note that the last term corresponds to the post-measurement noise
and it is unavoidable. For the second term, ||xtail(k)||2, we shortly shows that it is dominated by

||xtail(k)||1/
√
k. Hence, the only difference is the exponentially decaying term 2−T ||x||2. In turn,

the IHT algorithm is much faster than BP.

Claim 5. ||xtail(2k)||2 ≤ 1√
k
||xtail(k)||1.

Proof. (shelling method) WLOG, let us assume that the coordinate of x are sorted in a decreasing
order of their absolute values: |x1| ≥ |x2| ≥ · · · ≥ |xn|. Moreover, we partition the coordinates of
x into blocks of size k as follows: B1, · · · , Bn/k.

B1 B2 B6B5B4B3

Figure 1: In this example, k = 2 and n = 12.

Now, we apply the shelling method. Since coordinates of x are sorted by their absolute values, for
each coordinate j ∈ Bt, |xj | ≤ 1

k

∑
i∈Bt−1

|xi| = 1
k ||xBt−1 ||1.

||xtail(2k)||22 =

n/k∑
t=3

||xBt ||22 ≤
n/k∑
t=3

k · (
||xBt−1 ||1

k
)2 =

1

k

n/k∑
t=2

||xBt ||21

Finally, using the fact that for positive values A1, · · · , A`,
√
A1 + · · ·+A` ≤

√
A1 + · · ·+

√
A`:

||xtail(2k)||2 ≤
1

k
·

√√√√n/k∑
t=2

||xBt ||21 ≤
1√
k
||xtail(k)||1

Now lets focus on the proof of the convergence of IHT algorithm (proof of Theorem 4). Note that,
in the analysis we can assume that x is exactly k-sparse. More precisely, we can include the tailk(x)

2

term in the noise term and denote the new noise as ẽ.

Πx+ e = Π(xhead(k) + xtail(k)) + e = Πxhead(k) + (Πxtail(k) + e)︸ ︷︷ ︸
ẽ

(3)

Setting ẽ = Πxtail(k) + e, then we have ||ẽ||2 in the error term which is less than:

||ẽ||2 ≤
4-inequality

||e||2 + ||Πxtail(k)||2 = ||e||2 + ||
∑
t=2

ΠxBt ||2 ≤ ||e||2 +
∑
t=2

||ΠxBt ||2

RIP
≤ ||e||2 + (1 + ε)

∑
t=2

||xBt ||2

≤ ||e||2 +
1 + ε√
k
||xtail(k)||1

Hence, it does not change the performance guarantee of IHT by more than an ε-factor. In the rest
of this section, we assume that the input vector x is k-sparse.

Algorithm 1 Iterative Hard Thresholding (IHT).

1: function IHT(Π, y(= Πx+ e), k, T)
2: x[1] ← 0
3: for t = 1 · · ·T do
4: xt+1 ← Hk(x[t] +Π>(y−Πx[t])) . Hard thresholding operator (project a[t+1] on xhead(k))
5: end for
6: return xT+1

7: end function

The formal definition of Hk operator is as follows: Hk(z) := argmin
k-sparse ẑ

||z− ẑ||2 which is the projection

on head(k) coordinates of z.

Proof sketch of Theorem 4. We measure the progress of IHT algorithm based on the residual
vector r[t] := x− x[t]. The hope is to show that r decreases at some rate. For analysis purpose, we
define a[t+1] := x[t] + Π>(y −Πx[t]) (note that x[t+1] = Hk(a[t+1])).

a[t+1] = x[t] + Π>(y −Πx[t]) = x[t] + Π>(Πx+ e−Πx[t])

= x[t] + Π>(Π︸ ︷︷ ︸
≈I

r[t] + e) ≈ x[t] + r[t] + ΠT e ≈ x[t] + r[t] + e.

Intuitively, assuming r[t] is decaying, a[t] converges to x. The role of hard threshold operator Hk is
to make sure that all vectors are sparse so that Π behaves well on them.

Notation. To analyze the IHT algorithm, we setup the following notations:

• Γ∗k = supp(x),

• Γ[t] = supp(x[t]), and

• B[t] = Γ∗k ∪ Γ[t].

3

As we mentioned, the goal is to bound the residual vector r[t+1]. In particular, we need to show
that r[t+1] is decaying.

||r[t+1]||2 = ||x− x[t+1]||2 = ||xB[t+1] − x[t+1]

B[t+1] ||2

≤
4-ineq

||xB[t+1] − a[t+1]

B[t+1] ||2︸ ︷︷ ︸
I

+ ||a[t+1]

B[t+1] − x
[t+1]

B[t+1] ||2︸ ︷︷ ︸
II

Claim 6. ||a[t+1]

B[t+1] − x
[t+1]

B[t+1] ||2 ≤ ||xB[t+1] − a[t+1]

B[t+1] ||2 (or II ≤ I).

Proof. By definition of hard threshold operator Hk, x[t+1] is the best k-sparse approximate of a[t+1].
Since x is also a k-sparse vector, II ≤ I.

For brevity, in the rest of proof, we use B to denote B[t+1] and B′ to denote B[t].

||r[t+1]||2 = ||x− x[t+1]||2 = ||xB − x[t+1]
B ||2

≤
4-ineq

||xB − a[t+1]
B ||2 + ||a[t+1]

B − x[t+1]
B ||2

≤
Claim 6

2||xB − aB||2 = 2||xB − x[t]
B︸ ︷︷ ︸

r[t]

−Π>B(y −Πx[t])||2 (4)

Note that ΠB is equal to Π but columns in B̄ are zero out. Next, by expanding y, we have:

(4)
= 2||r[t]

B −Π>B(Πr[t] + e)||2 (write r[t] = r
[t]
B + r

[t]
B′\B)

= 2|| r[t]
B︸︷︷︸

IBr[t]

−Π>B Πr
[t]
B︸︷︷︸

ΠBr
[t]
B

−Π>B Πr
[t]
B′\B︸ ︷︷ ︸

ΠB′\Br
[t]

B′\B

−Π>Be||2

= 2||(IB −Π>BΠB)r
[t]
B −Π>BΠB′\Br

[t]
B′\B −Π>Be||2

≤
4-ineq

2[||IB −Π>BΠB|| · ||r[t]
B ||2 (5)

+ ||Π>BΠB′\B|| · ||r
[t]
B′\B||2 (6)

+ ||ΠB|| · ||e||2] (7)

By the following claims, we upper bound terms (5), (6) and (7).

Claim 7. ||IB −Π>BΠB|| ≤ ε.

Proof. Π is an ε-subspace embedding (ε-s.e.) for colspan(U) if ||(ΠU)>ΠU − I|| ≤ ε. Since the
measurement matrix Π is (ε, 3k)−RIP, it is ε-s.e. for all

(
n
k

)
k-dim subspaces (For more details

refer to Definition 4 in Lecture 11).

Claim 8. ||Π>BΠB′\B|| ≤ ε.

4

Proof. By definition of operator norm, ||Π>BΠB′ \B︸ ︷︷ ︸
D

|| = sup
||a||,||s||=1

〈ΠBaB,ΠDsD〉 = sup
||a||,||s||=1

〈ΠaB,ΠsD〉.

Since Π satisfies JL property, it preserves the dot product. Moreover, since D∩B = ∅, 〈aB, sD〉 = 0;
hence, 〈ΠaB,ΠsD〉 ≤ ε (note that aB + sD and aB − sD are 3k-sparse and Π is a (ε, 3)-RIP ma-
trix).

Claim 9. ||Π>B|| = ||ΠB|| ≤
√

1 + ε.

Proof. Note that Π satisfies JL properties and in particular preserves the `2 norm. Then,

||ΠB|| = sup
||a||2=1

||ΠBaB||2 ≤
JL property

√
1 + ε||aB||2 =

√
1 + ε.

Then, using above three claims, we bound r[t+1] as follows:

||r[t+1]||2 ≤ 2[||IB −Π>BΠB|| · ||r[t]
B ||2 + ||Π>BΠB′\B|| · ||r

[t]
B′\B||2 + ||ΠB|| · ||e||2]

≤ 2ε(||r[t]
B ||2 + ||r[t]

B′\B||2︸ ︷︷ ︸
by Claim 11

) + 3||e||2 By Claims 7, 8 and 9

≤ 2
√

2ε||r[t]||2 + 3||e||2 For sufficiently small ε

≤ 1

2
||r[t]||2 + 3||e||2 (8)

Corollary 10. ||r[T+1]||2 ≤ 2−T ||x||2 + 6||e||2

Proof. Using (8) and by induction,

||r[T+1]||2 ≤
1

2T
||r[1]||2 + 3(1 + 1/2 + · · · 1/2T)||e||2

≤ 2−T ||x||2 + 6||e||2

Claim 11. ||r[t]
B ||2 + ||r[t]

B′\B||2 ≤
√

2 · ||r[t]||2.

Proof. Define z = rB∪B′ , x = rB and y = rB′ . Then, ||z||22 = ||x||22 + ||y||22. By (AM-GM)
inequality, √

||x||22 +
√
||y||22 ≤

√
2
√
||x||22 + ||y||22 ≤

√
2
√
||z||22.

5

3 Model Based Compressed Sensing

In standard compressed sensing, the assumption is that x is an approximately k-sparse vector.
This implies that there exists S ∈ Ωn,k such that ||x− xS ||2 is small where Ωn,k =

([n]
k

)
. Then, to

do k-sparse recovery, enough for Π to be ε-subspace embedding for all k-dim coordinates indexed

by Ωn,k. This led Π to have
k+lg |Ωn,k|

ε2
= lg(1/δ)ε2 (δ � 1

Ck|Ωn,k|
). Note that k is required for

preserving a single k-dim subspace and the second term is for preserving all k-dim coordinates
subspaces in Ωn,k. But, what if we know more about the structure of x? This leads to the model
based compressed sensing.

In model based compressed sensing, Ωn,k will be replaced byM and then it only required to blow up
the number of rows in Π by a factor of lg(M) which can be much smaller than k lg(n/k) (lg |Ωn,k|).

The model based RIP studied by Baraniuk et al. [BCDH10]. Using model based RIP, we can adopt
the IHT algorithm slightly to obtain model based IHT. It only suffices to instead of projecting
on Ωn,k (using Hk operator), in each iteration project x[t] to M via PM operator: PM(z) :=
argmin
ẑ∈M

||z − ẑ||2.

Algorithm 2 Model Based Iterative Hard Thresholding (MB-IHT).

1: function IHT(Π, y(= Πx+ e), k, T)
2: x[1] ← 0
3: for t = 1 · · ·T do
4: x[t+1] ← PM(x[t] + Π>(y −Πx[t])) . Hard thresholding operator (project a[t+1] onM)
5: end for
6: return xT+1

7: end function

Similarly to the standard compressed sensing in which Π is required to be (ε, 3k)-RIP, in the
model based compressed sensing, we need the measurement matrix Π to be RIP for M3 = {A ∪
B ∪ C|A,B,C ∈M} (to show similar results to those in Claim 7, 8 and 9).

This approach (model based compressed sensing) improves the guarantees of the standard com-
pressed sensing for signals with structured sparsity such as wavelet and block models [BCDH10]
and tree sparsity [HIS15, HIS14a, HIS14b, BIS17].

References

[BCDH10] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and Chinmay Hegde. Model-
based compressive sensing. IEEE Transactions on Information Theory, 55(11):5302–
5316, 2010.

[BD09] Thomas Blumensath and Mike E. Davies. A simple, efficient and near optimal algorithm
for compressed sensing. In ICASSP, 2009.

[BIS17] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree
sparsity in nearly-linear time. In SODA, pages 2215–2229, 2017.

6

[HIS14a] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. A fast approximation algorithm
for tree-sparse recovery. In ISIT, pages 1842–1846, 2014.

[HIS14b] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Nearly linear-time model-based
compressive sensing. In ICALP, pages 588–599, 2014.

[HIS15] Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Approximation algorithms for
model-based compressive sensing. IEEE Transactions on Information Theory, 2015.

[NT08] Deanna Needell and Joel A. Tropp. CoSAMP: Iterative signal recovery from incomplete
and inaccurate samples. Applied and Computational Harmonic Analysis, 2008.

7

