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Lecture 12 — October 12, 2017
Prof. Jelani Nelson Scribe: Shyam Narayanan

1 Overview

In the last lecture we discussed efficient algorithms for matrix multiplication and briefly talked
about regression. We needed to find an efficient method of generating an e-subspace embedding
from last time, since last time our approach required finding the Singular Value Decomposition of
A, which is quite slow.

In this lecture we focus on the following:

e Subspace Embeddings
e Regression
e Low-rank approximation

Our general approach is to minimize ||Az — b|| by looking at ||TIAz — IIb|| for some II € R*™,
where d << n.

2 Subspace Embeddings

Recall the following from last lecture:

Definition 1. II is an e— subspace embedding (e-s.e.) for V. = {zx : 3z sit. x = Uz} (where
U € R™? s some matriz with orthonormal columns, i.e. UTU = 1) if

Ve eV, (1—ellz|} < |zl < (1 + )23
We showed in the previous lecture that this last condition is equivalent to
(M) (W) —I|| < e,
where || - || represents the operator norm.
We talked about Singular value decomposition (SVD), which tells us for any matrix A € R"*¢
with rank 7, we can write A = UXVT, where U, € R™",V € R¥>*" ¥ € R™*" such that UTU =
I,VTV =1, and ¥ is a diagonal matrix. If E = Colspace(A), then letting IT = UT € R¥*™ gives

us [IU = I so ||(ITUV)T(ITIU) — I|| = 0 < e. This seems great, but a problem is that solving for U
takes time O(n - d?), which is really slow. So we need to try something different.

We have two ways of constructing subspace embeddings:

1. Sampling
2. “JL” approach



2.1 Sampling
Given as input A € R™*? we want a subspace embedding for Colspace(A), i.e. ||TTAz||3 ~ ||Az]||3
for all 2. This means we want to preserve AT A, since ||Az|]3 = (Az)T (Ax) = 2T (AT A)x.

Recall that if

T
—aj —

then .
ATA = Z a;al .
i=1

This is a straightforward but valuable fact in linear algebra.

Our goal for constructing II is to sample each row with some probability p;. Let

J1 we keep a;
T 0 we discard a; '

Then, we want our matrix

T
II= D =1IA= :
0 TIn M T

VP Vpr On

So this means .
@A) (14) =Y Lazal
i1 Pi

Note this means

= Efm] = T T

E[(ILA)" (IL4)] = aial =3 aal = ATA.

Note that E[number of rows of A kept] = > p;, so we want to know how small of a p; we can get
away with.

Definition 2. Define

<(Ii,33>
R; =sup .
te [ Az

R; is often thought of as like the “sensitivity” of the row a;.
Note that [|Az|3 =Y 2T a;al 2 = Y (a;, )2
We want to get some information about p; given R;. In fact, we can show the following;:

Claim 3. For all i, if 0 < p; < %, then the distribution of I1 where we replace p; = 0 is strictly
better than the current distribution. In other words, if p; is not sufficiently large with respect to R;,
it 1s better that we just set p; = 0.



Proof. Let’s fix some 7 and look at
A = o)+ 3 aisa)? = Hais2)”,
pi pz
J#Z
Suppose that p; # 0. Then, if we were to sample row ¢ (which happens with positive probability),
o 1 2
[HTAz][3 = —(a;, z)
pi

for all . This is true for
(ai,z)
|| Az]]3

x* = arg max

But then R
||TLAz* |2 > p—fl!Ax*Hé > 2||Az*||3,
(A

given that p; < %, which means II is not e-s.e. Therefore, it is strictly better to let p; = 0 if

pi < & O

Definition 4. Given a matric M = ULV (with UXVT as M’s SVD), we define the pseudoin-
verse of M as MT = VX~ 1UT.

Definition 5. Define {; = al (AT A)*a;. {; is called the ith leverage score of A.

A lot of papers use leverage score instead of our sensitivity R;, but it doesn’t really matter which
one is used. This is because:

Claim 6. ¢; = R;.

Also, we note the following:

Claim 7. A(ATA)* AT is the orthogonal projection onto Colspace(A).

Proof. By looking at the SVD of A, we get
ATA=veuTusv? =vevT.
Therefore, (AT A)* = VX~2VT. This means

AATATAT =usvT(vetvThvysuT = uu?.

Note that this implies
b = e, A(ATA)T AT e; = [|U i[5 = [us,

where

T
_ul_

U =



is in R™*?. Also, if we pick p; = « - ¢; for some constant a, then

n
Y pi=a-) |uill’=a U} = ad,
i=1

since each column of U has unit norm and there are d columns.
It turns out that the following is true:
Theorem 8. [1] If p; > min(1, ;) for all i, and if a« > C - ln(g%, then

P(IT is € — s.e. for Colspace(A)) >1—§

Therefore, to compute 11, we just need to compute p;, but this means we need U, which as we know
takes too long to compute. However, there is a fast algorithm that, given A, will compute 0.0,
such that Vi, £; < ¢; < 2¢;. (Maybe we’ll have this on our homework?)

2.2 JL Approach

We will use the technique of “Oblivious Subspace Embedding” (OSE) [2].
Definition 9. A distribution D over R™*™ is an €,6— OSE for dimension d if

YU € R s.t. UTU = I, Prop(||(HU)TTIU — 1| > €) < 6.

How would we prove that some distribution D is an OSE? There are three main approaches we’ll
cover:

2.2.1 Nets

We can construct a S-net (in ) E' for E = {z : = Uz} for § = %. We can prove that if 11
e-preserves all z € E', then II e-preserves E. Note that |E'| = B)d = ¢9@ Therefore, we need

(B8 (d+1g3;>
2

€2 €
dimensions, by JL lemma.
2.2.2 Moment Method
Let M = (IIU)TTIU — I. By Markov’s inequality, we know that for any p > 1,
1
P(IM]| > €) < ZE(IM|P).
Let the eigenvalues of M be A, ..., A\q where |A1| > |A2] > ... > |\4]. Then,

eipE(HMHp) E(\) < EZ/\” —IE (Tr(MP)),



where we can choose p to be even so A is positive. Brute force matrix multiplication tells us that
p—1
(MP)i; = Z H Miyiy iy
i=i0,i1,0nyip=j =0
which means that

p—1
TrMP) = > ] Miir

{io,...,ip}:i():ip t=0
This looks pretty bad, however, it can be useful. As an example, let p = 2 and let IT € R™*" be

the Count Sketch matrix
—0—

M= [—+1—

—0—

where each column has exactly one nonzero entry. Then, II is an OSE for m = @(%) by the
moment method for p = 2 [3][4][5].

Note that since II has only one nonzero element per column, A +— IIA can be cone in time
O(nnz(A)), where nnz refers to the number of nonzero entries.

The Count Sketch matrix turns out to have the (e, d,2) — JL moment property for m = O(ﬁ),
which means, as we showed in the previous lecture,

B (||(ILA)"(I1B) — A”B)|lr > || AllF||BlIr) < 6.

Now, if A= B = U, then ||A||r = ||B||r = V/d so ||A||r||B||r = d. Letting v = S, we need

1 d?
m—@%)—@(@a)

rows for the Count Sketch matrix, as mentioned above.

2.2.3 Chaining

We want E||M]|| < €, where again M = (IIU)TTIU — I. Recall that E||M|| = E sup |27 Mz|. Then,
llzll2=1
the following is true:

Theorem 10. [6] Fiz T C S™1. Then, if Il € R™*™ with i.i.d. N (0, %) entries, then

T 2(T
Esup|\|nxu§_1\g—g( ) o°@)
zeT

vm m

where

g9(T) = Eg4sup(g, x).
x€eT

Now, we can just choose m 2, gi@ to get the right hand side is O(e + €2) = O(e).



3 Regression

Recall that we are trying to minimize ||Ax — b|| over z. We try to make faster is to minimize
||ITLAz —I1b|| where II has much fewer rows than columns, and where II is e-s.e. for span(b, cols(A))

so that ||ILAz — IIb|| ~ ||Az — b||.

Last time, we saw that I is e-s.e. for span(b, cols(A)) implies m = ©(d/e?) is sufficient. We can
use fast JL to get an OSE.

We briefly present two other ways:

e The first approach is from [2]. If IT is

1. a Tlo—subspace embedding for Colspace(A) and

2. provides a \/g — AM My error for some particular two matrices

then we get some & such that ||AZ — b||2 < (1 + €) min ||Az — b||2, and we only need ¢ rows
instead of E% rOwWS.

e The second approach is a gradient descent approach, from [7] [8] [3]. Define f(z) = || Az —b]|3.
Given z®) | we move to 2+ = z(¥) —vV f(xg). As long as the ratio of the largest to smallest
singular value of A (also called the “condition number” of A or k(A)) is not too large, they
showed gradient descent converges quickly.

But what if x(A) is not small? Suppose that IIA = UXVT R = VX~!. Then, it turns
out that K(AR) = ©O(1), since for all z, |[lIARz|| = ||[Ux|| = ||z||, but if II is e-s.e. for
Colspace(A), then ||ARz|| = ||[ILARz|| = ||z||, so AR cannot have any eigenvalues that are
too small or too large. Therefore, we can do gradient descent with the matrix AR.
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