
Sketching Algorithms for Big Data Fall 2017

Lecture 12 — October 12, 2017

Prof. Jelani Nelson Scribe: Shyam Narayanan

1 Overview

In the last lecture we discussed efficient algorithms for matrix multiplication and briefly talked
about regression. We needed to find an efficient method of generating an ε-subspace embedding
from last time, since last time our approach required finding the Singular Value Decomposition of
A, which is quite slow.

In this lecture we focus on the following:

• Subspace Embeddings

• Regression

• Low-rank approximation

Our general approach is to minimize ||Ax − b|| by looking at ||ΠAx − Πb|| for some Π ∈ Rd×n,
where d << n.

2 Subspace Embeddings

Recall the following from last lecture:

Definition 1. Π is an ε− subspace embedding (ε-s.e.) for V = {x : ∃z s.t. x = Uz} (where
U ∈ Rn×d is some matrix with orthonormal columns, i.e. UTU = I) if

∀x ∈ V, (1− ε)||x||22 ≤ ||Πx||22 ≤ (1 + ε)||x||22.

We showed in the previous lecture that this last condition is equivalent to

||(ΠU)T (ΠU)− I|| ≤ ε,

where || · || represents the operator norm.

We talked about Singular value decomposition (SVD), which tells us for any matrix A ∈ Rn×d
with rank r, we can write A = UΣV T , where U,∈ Rn×r, V ∈ Rd×r,Σ ∈ Rr×r, such that UTU =
I, V TV = I, and Σ is a diagonal matrix. If E = Colspace(A), then letting Π = UT ∈ Rd×n gives
us ΠU = I so ||(ΠU)T (ΠU) − I|| = 0 < ε. This seems great, but a problem is that solving for U
takes time O(n · d2), which is really slow. So we need to try something different.

We have two ways of constructing subspace embeddings:

1. Sampling

2. “JL” approach

1

2.1 Sampling

Given as input A ∈ Rn×d, we want a subspace embedding for Colspace(A), i.e. ||ΠAx||22 ≈ ||Ax||22
for all x. This means we want to preserve ATA, since ||Ax||22 = (Ax)T (Ax) = xT (ATA)x.

Recall that if

A =

−a
T
1−
...

−aTn−

then

ATA =
n∑
i=1

aia
T
i .

This is a straightforward but valuable fact in linear algebra.

Our goal for constructing Π is to sample each row with some probability pi. Let

ηi =

{
1 we keep ai

0 we discard ai
.

Then, we want our matrix

Π =

η1√
p1
· · · 0

...
. . .

...
0 · · · ηn√

pn

⇒ ΠA =

− η1√

p1
aT1−

...
− ηn√

pn
aTn−

 .
So this means

(ΠA)T (ΠA) =
n∑
i=1

ηi
pi
aia

T
i .

Note this means

E[(ΠA)T (ΠA)] =
n∑
i=1

E[ηi]

pi
aia

T
i =

n∑
i=1

aia
T
i = ATA.

Note that E[number of rows of A kept] =
∑
pi, so we want to know how small of a pi we can get

away with.

Definition 2. Define

Ri = sup
x

〈ai, x〉
||Ax||22

.

Ri is often thought of as like the “sensitivity” of the row ai.

Note that ||Ax||22 =
∑
xTaia

T
i x =

∑
〈ai, x〉2.

We want to get some information about pi given Ri. In fact, we can show the following:

Claim 3. For all i, if 0 < pi <
Ri
2 , then the distribution of Π where we replace pi = 0 is strictly

better than the current distribution. In other words, if pi is not sufficiently large with respect to Ri,
it is better that we just set pi = 0.

2

Proof. Let’s fix some i and look at

||ΠAx||22 =
ηi
pi
〈ai, x〉2 +

∑
j 6=i

ηj
pj
〈ai, x〉2 ≥

ηi
pi
〈ai, x〉2.

Suppose that pi 6= 0. Then, if we were to sample row i (which happens with positive probability),

||ΠAx||22 ≥
1

pi
〈ai, x〉2

for all x. This is true for

x∗ = arg max
x

〈ai, x〉
||Ax||22

.

But then

||ΠAx∗||22 ≥
Ri
pi
||Ax∗||22 > 2||Ax∗||22,

given that pi <
Ri
2 , which means Π is not ε-s.e. Therefore, it is strictly better to let pi = 0 if

pi <
Ri
2 .

Definition 4. Given a matrix M = UΣV T (with UΣV T as M ’s SVD), we define the pseudoin-
verse of M as M+ = V Σ−1UT .

Definition 5. Define `i = aTi (ATA)+ai. `i is called the ith leverage score of A.

A lot of papers use leverage score instead of our sensitivity Ri, but it doesn’t really matter which
one is used. This is because:

Claim 6. `i = Ri.

Also, we note the following:

Claim 7. A(ATA)+AT is the orthogonal projection onto Colspace(A).

Proof. By looking at the SVD of A, we get

ATA = V ΣUTUΣV T = V Σ2V T .

Therefore, (ATA)+ = V Σ−2V T . This means

A(ATA)+AT = UΣV T (V Σ−2V T)V ΣUT = UUT .

Note that this implies
`i = eiA(ATA)+AT ei = ||UT ei||22 = ||ui||2,

where

U =

−u
T
1−
...

−uTn−

3

is in Rn×d. Also, if we pick pi = α · `i for some constant α, then

∑
pi = α ·

n∑
i=1

||ui||2 = α · ||U ||2F = αd,

since each column of U has unit norm and there are d columns.

It turns out that the following is true:

Theorem 8. [1] If pi ≥ min(1, α`i) for all i, and if α ≥ C · ln(d/δ)
ε2

, then

P(Π is ε− s.e. for Colspace(A)) ≥ 1− δ

Therefore, to compute Π, we just need to compute pi, but this means we need U , which as we know
takes too long to compute. However, there is a fast algorithm that, given A, will compute ˜̀

1, ..., ˜̀
n

such that ∀i, `i ≤ ˜̀
i ≤ 2`i. (Maybe we’ll have this on our homework?)

2.2 JL Approach

We will use the technique of “Oblivious Subspace Embedding” (OSE) [2].

Definition 9. A distribution D over Rm×n is an ε, δ−OSE for dimension d if

∀U ∈ Rn×d s.t. UTU = I, PΠ∼D(||(ΠU)TΠU − I|| > ε) < δ.

How would we prove that some distribution D is an OSE? There are three main approaches we’ll
cover:

2.2.1 Nets

We can construct a β-net (in `2) E′ for E = {x : x = Uz} for β = 1
10 . We can prove that if Π

ε-preserves all x ∈ E′, then Π ε-preserves E. Note that |E′| = O(1
β)d = eO(d). Therefore, we need

c · lg(|E′|/δ)
ε2

= O

(
d+ lg 1

δ

ε2

)
dimensions, by JL lemma.

2.2.2 Moment Method

Let M = (ΠU)TΠU − I. By Markov’s inequality, we know that for any p ≥ 1,

P(||M || > ε) <
1

εp
E(||M ||p).

Let the eigenvalues of M be λ1, ..., λd where |λ1| ≥ |λ2| ≥ ... ≥ |λd|. Then,

1

εp
E(||M ||p) =

1

εp
E(λp1) ≤ 1

εp
E(
∑

λpi) =
1

εp
E(Tr(Mp)),

4

where we can choose p to be even so λpi is positive. Brute force matrix multiplication tells us that

(Mp)i,j =
∑

i=i0,i1,...,ip=j

p−1∏
t=0

Mitit+1

which means that

Tr(Mp) =
∑

{i0,...,ip}:i0=ip

p−1∏
t=0

Mitit+1 .

This looks pretty bad, however, it can be useful. As an example, let p = 2 and let Π ∈ Rm×n be
the Count Sketch matrix

Π =

−0−

...
−± 1−

...
−0−

where each column has exactly one nonzero entry. Then, Π is an OSE for m = Θ(d

2

ε2δ
) by the

moment method for p = 2 [3][4][5].

Note that since Π has only one nonzero element per column, A 7→ ΠA can be cone in time
O(nnz(A)), where nnz refers to the number of nonzero entries.

The Count Sketch matrix turns out to have the (ε, δ, 2) − JL moment property for m = O(1
ε2δ

),
which means, as we showed in the previous lecture,

P
(
||(ΠA)T (ΠB)−ATB)||F > ε||A||F ||B||F

)
< δ.

Now, if A = B = U, then ||A||F = ||B||F =
√
d so ||A||F ||B||F = d. Letting γ = ε

d , we need

m = Θ

(
1

γ2δ

)
= Θ

(
d2

ε2δ

)
rows for the Count Sketch matrix, as mentioned above.

2.2.3 Chaining

We want E||M || < ε, where again M = (ΠU)TΠU−I. Recall that E||M || = E sup
||x||2=1

|xTMx|. Then,

the following is true:

Theorem 10. [6] Fix T ⊂ Sn−1. Then, if Π ∈ Rm×n with i.i.d. N (0, 1
m) entries, then

E sup
x∈T

∣∣||Πx||22 − 1
∣∣ . g(T)√

m
+
g2(T)

m
,

where
g(T) = Eg sup

x∈T
〈g, x〉.

Now, we can just choose m & g2(T)
ε2

to get the right hand side is O(ε+ ε2) = O(ε).

5

3 Regression

Recall that we are trying to minimize ||Ax − b|| over x. We try to make faster is to minimize
||ΠAx−Πb|| where Π has much fewer rows than columns, and where Π is ε-s.e. for span(b, cols(A))
so that ||ΠAx−Πb|| ≈ ||Ax− b||.

Last time, we saw that Π is ε-s.e. for span(b, cols(A)) implies m = Θ(d/ε2) is sufficient. We can
use fast JL to get an OSE.

We briefly present two other ways:

• The first approach is from [2]. If Π is

1. a 1
10 -subspace embedding for Colspace(A) and

2. provides a
√

ε
d −AMMF error for some particular two matrices

then we get some x̃ such that ||Ax̃ − b||22 ≤ (1 + ε) min ||Ax − b||22, and we only need d
ε rows

instead of d
ε2

rows.

• The second approach is a gradient descent approach, from [7] [8] [3]. Define f(x) = ||Ax−b||22.
Given x(k), we move to x(k+1) = x(k)−γ∇f(xk). As long as the ratio of the largest to smallest
singular value of A (also called the “condition number” of A or κ(A)) is not too large, they
showed gradient descent converges quickly.

But what if κ(A) is not small? Suppose that ΠA = UΣV T , R = V Σ−1. Then, it turns
out that κ(AR) = Θ(1), since for all x, ||ΠARx|| = ||Ux|| = ||x||, but if Π is ε-s.e. for
Colspace(A), then ||ARx|| ≈ ||ΠARx|| = ||x||, so AR cannot have any eigenvalues that are
too small or too large. Therefore, we can do gradient descent with the matrix AR.

References

[1] Daniel A. Spielman, Nikhil Srivastava. Graph sparsification by effective resistances. STOC,
563–568, 2008.

[2] Tamas Sarlos. Improved Approximation Algorithms for Large Matrices via Random Projec-
tions. FOCS, 143–152, 2006.

[3] Kenneth L. Clarkson, David P. Woodruff. Low rank approximation and regression in input
sparsity time. STOC, 81–90, 2013.

[4] Jelani Nelson, Huy L. Nguyen. Lower bounds for oblivious subspace embeddings. CoRR
abs/1308.3280, 2013.

[5] Xiangrui Meng, Michael W. Mahoney. Low-distortion subspace embeddings in input-sparsity
time and applications to robust linear regression. STOC, 91–100, 2013.

[6] Yehoram Gordon. On Milmans inequality and random subspaces which escape through a mesh
in Rn. Geom. Aspects of Funct. Anal., vol. 1317, pages 84–106, 1986-87.

6

[7] Vladimir Rokhlin, Mark Tygert. A fast randomized algorithm for overdetermined linear least-
squares regression. PNAS 105(36): 13212–13217, 2008.

[8] Haim Avron, Petar Maymounkov, Sivan Toledo. Blendenpik: Supercharging LAPACK’s Least-
Squares Solver. SIAM J. Scientific Computing 32(3): 1217–1236, 2010.

7

