
Sketching Algorithms for Big Data Fall 2017

Lecture 11 — October 5, 2017

Prof. Jelani Nelson Scribe: Hong Hu

1 Overview

In the last lecture, we discussed fast algorithms for computing JL transform using the idea of
sampling. In this and the next few lectures, we are going to see how to use sampling and embedding
technique to obtain faster algorithm for the following problems:

• Matrix multiplication

• Regression

• PCA/low-rank approximation

In this lecture, we mainly focus on fast matrix multiplication.

2 Matrix Multiplication

Suppose we have two matrices A ∈ Rn×d, B ∈ Rn×p, written as:

AT =

 | · · · |
a1 · · · an
| · · · |

 , B =

−b
T
1−
...

−bTn−

where ai ∈ Rd, bi ∈ Rp. We want to compute ATB.

The naive approach for doing this requires O(ndp) for loops. There are some faster algorithms.
For square matrix multiplication, the following algorithms are of less complexity O(ω):

1. ω < log2 7 (Strassen)

2. ω < 2.376 (Coppersmith, Winograd)

3. ω < 2.374 (Stothevs)

4. ω < 2.3728642 (Vassilevke-Williams)

5. ω < 2.3728639 (Le Gell)

and for multiplying arbitrary matrix, it suffices to break them into multiple square matrix mul-
tiplications. All these algorithms are exact computation. What we are going to show today are

1

some randomized algorithms, which give us answers closed to the exact multiplication with high
probability, to be more exact, we want to compute C ∈ Rd×p, s.t.

‖ATB − C‖X < ε,with probability > 1− δ

where X is some matrix norm like Frobenius norm (‖M‖F = (
∑

i,jM
2
i,j)

1
2), l2 operator norm

(‖M‖ = sup‖x‖=1 |xTMx|), etc.

The randomized algorithm for matrix multiplication was first studied in [1]. The methods developed
ever since then fall into two main categories:

• Sampling approach

• JL-based approach

We are going to analyze two algorithms, one in each category.

2.1 Sampling Approach

Here we analyzed the algorithm proposed in [1]. The starting point is to rewrite ATB as a sum of
n rank-1 matrices:

ATB =

n∑
i=1

aib
T
i

Then to reduce computational complexity, we can sample m rows from A and B using sampling
matrix Π:

Π =
1√
m

n︷ ︸︸ ︷

0 0 · · · 1√
pi1

· · · 0 0

· ·
0 0 · · · 0 · · · 1√

pim
0

m

There is only one non-zero element in each row of Π, and in the ith row, the jth element Πi,j = 1√
pj

with probability pj . Then matrices ΠA ∈ Rm×d and ΠB ∈ Rm×p are the sampled versions of A
and B. We use

C = (ΠA)TΠB =
1

m

m∑
k=1

aikb
T
ik

pik

to approximate ATB, where ik denotes the index of non-zero element in kth row of Π. Note here
ik is random.

To prove the correctness of this algorithm, we first show that EC = ATB. For each
aik b

T
ik

pik
, we have:

E
aikb

T
ik

pik
=

m∑
j=1

pj
ajb

T
j

pj
= ATB

2

Therefore, we can easily get:

EC =
1

m

m∑
k=1

E
aikb

T
ik

pik
= ATB

Next, the goal is to show P(‖C − ATB‖F > ε‖A‖F ‖B‖F) < η, which can be reached by using
second moment method:

P(‖C −ATB‖2F > ε2‖A‖2F ‖B‖2F) <
E ‖C −ATB‖2F
ε2‖A‖2F ‖B‖2F

The idea in [1] is to optimize over sampling probability pi s.t. E ‖C − ATB‖2F is minimized. The

optimal pi ∝ ‖ai‖2‖bi‖2. After minimization, it can be shown that
E ‖C−ATB‖2F
ε2‖A‖2F ‖B‖

2
F
< C

ε2m
, so it suffices

to have m ≥ C
ε2η

. Note that after doing this, m ∝ 1
η and in order to get m ∝ log 1

η as desired, we
need to use the “median approach”:

1. Run the above algorithm many times independently with η = 1
3

2. Obtain C1, . . . , Ct, t = Θ(lg 1
δ)

3. Pick Ci that is accurate enough.

For the 3rd step, it is impossible to check if ‖C − ATB‖2F > ε2‖A‖2F ‖B‖2F , since we don’t know
the exact ATB. In [3], the authors proposed a way to do this via checking the pairwise difference
‖Ci − Cj‖F , i, j = 1, . . . , t. Let

Si = |{j : ‖Ci − Cj‖F ≤ 2ε‖A‖F ‖B‖F }|

the algorithm returns any Ci s.t. Si ≥ t
2 .

This algorithm can be understood as follows: if ‖Ci − ATB‖F ≤ ε‖A‖F ‖B‖F , ‖Cj − ATB‖ ≤
ε‖A‖F ‖B‖F , then by triangle inequality, we have ‖Ci − Cj‖F ≤ ‖Ci − ATB‖F + ‖Cj − ATB‖F ≤
2ε‖A‖F ‖B‖F . On the contrary, if ‖Ci − ATB‖F is large, then by triangle inequality again for
any ‖Cj − ATB‖F small, ‖Ci − Cj‖F ≥ ‖Ci − ATB‖F − ‖Cj − ATB‖F , which can still be large.
Therefore, with η = 1

3 <
1
2 , for a good Ci, more than half ‖Ci−Cj‖F will be less than 2ε‖A‖F ‖B‖F ,

while for a bad Ci, more than half ‖Ci − Cj‖F can be large.

Since computing ‖A‖F , ‖B‖F requires only O(nd + nr), the most time-consuming step is doing
pair-wise comparison. The worst time complexity is of O(lg2 1

δ rd), one open question is that if it
is possible to reduce it to O(lg 1

δ rd).

2.2 JL-based Approach

The JL-based approach was first proposed in [2]. First, we introduce (ε, δ, p) JL moment property
(JLMP) to characterize lp norm of the difference ‖πx‖2 − ‖x‖2 in JL mapping:

Definition 1. Π ∈ Rm×n and D is a distribution over Π. D satisfies the (ε, δ, p)−JL moment
property if for any x of unit norm, we have EΠ∼D|‖Πx‖22 − 1|p < εpδ.

3

In fact, there are several well-known matrices satisfying JLMP:

1. Dense sub-Gaussian matrix: (ε, δ, lg 1
δ)− JLMP, with m ' 1

ε2
log 1

δ

2. AMS sketch matrix: (ε, δ, 2)− JLMP with m ' 1/ε2δ.

3. Fast JL matrix: (ε, δ, lg(nδ))− JLMP with m ' 1
ε lg 1

δ

All these examples can be proved by using the fact:

E |Z|p =

∫ ∞
0

pxp−1P (|Z| > x)dx (1)

and combining the probability tail bound on ‖Πx‖ − 1. A more detailed exploration on this can
be found in [4]. Here, we assume that such a D exists and utilize some properties of JLMP for our
construction.

One property of JLMP we are going to use below is that a random matrix Π satisfying (ε, δ, p)−JLMP
can preserve inner product w.r.t. lp norm:

Claim 2. If Π comes from (ε, δ, p)−JLMP, p ≥ 1, then ∀x, y of unit norm,

‖ 〈Πx,Πy〉 − 〈x, y〉 ‖p ≤ (3ε)δ
1
p

Proof. The inner product of x, y can be expressed by their l2 norm:

〈x, y〉 =
1

2
(‖x‖22 + ‖y‖22 − ‖x− y‖22) (2)

〈Πx,Πy〉 =
1

2
(‖Πx‖22 + ‖Πy‖22 − ‖Π(x− y)‖22) (3)

thus

〈Πx,Πy〉 − 〈x, y〉 =
1

2
(‖Πx‖22 − 1 + ‖Πy‖22 − 1 + ‖Π(x− y)‖22 − ‖x− y‖22)

By triangle inequality ‖x− y‖2 ≤ 2 and also:

‖ 〈Πx,Πy〉 − 〈x, y〉 ‖p ≤
1

2

∥∥‖Πx‖22 − 1
∥∥
p

+
1

2

∥∥‖Πy‖22 − 1
∥∥
p

+
1

2

∥∥‖Π(x− y)‖22 − ‖x− y‖22
∥∥
p

≤ εδ
1
p

2
+
εδ

1
p

2
+

4εδ
1
p

2

= (3ε)δ
1
p

Now we are ready to state a theorem in [5], which shows how JLMP can help us bound the Frobenius
distance between C and ATB:

Theorem 3. Suppose D has (ε, δ, p)−JLMP for p ≥ 2, then for A,B as before,

PΠ∼D(‖ATB − (ΠA)TΠB‖F > 3ε‖A‖F ‖B‖F) < δ

4

Proof. The idea is to first bound PΠ∼D(‖ATB− (ΠA)TΠB‖F > 3ε‖A‖F ‖B‖F) by Markov inequal-
ity:

P
Π∼D

(‖ATB − (ΠA)TΠB‖F > 3ε‖A‖F ‖B‖F) <
E ‖ATB − (ΠA)TΠB‖pF

(3ε‖A‖F ‖B‖F)p
(4)

and then bound E ‖ATB − (ΠA)TΠB‖pF . Let M , ATB − (ΠA)TΠB, we have

M2
ij = (〈Πai,Πbj〉 − 〈ai, bj〉)2

=

(〈
Π

ai
‖ai‖

,Π
bj
‖bj‖

〉
−
〈

ai
‖ai‖

,
bj
‖bj‖

〉)2

‖ai‖22‖bj‖22

and we define Xij ,
〈

Π ai
‖ai‖ ,Π

bj
‖bj‖

〉
−
〈

ai
‖ai‖ ,

bj
‖bj‖

〉
. The lp norm of ‖M‖F can be rewritten as:

E ‖M‖pF =
∥∥∥‖M‖2F∥∥∥ p

2

p
2

=
∥∥∥∑

i,j

M2
ij

∥∥∥ p
2

p
2

(5)

Since p ≥ 2⇒ p
2 ≥ 1, we can use triangle inequality over

∥∥∥∑i,jM
2
ij

∥∥∥
p
2

:

∥∥∥∑
i,j

M2
ij

∥∥∥
p
2

=
∥∥∥∑

i,j

X2
ij‖ai‖22‖bj‖22

∥∥∥
p
2

≤
∑
i,j

∥∥∥X2
ij‖ai‖22‖bj‖22

∥∥∥
p
2

=
∑
i,j

‖ai‖22‖bj‖22‖Xij‖2p

≤ (3εδ
1
p)2
∑
i,j

‖ai‖22‖bj‖22 using Claim 2 on
ai
‖ai‖

,
bi
‖bi‖

= (3εδ
1
p)2‖A‖2F ‖B‖2F

Combined with (5),

E ‖M‖pF =
∥∥∥∑

i,j

M2
ij

∥∥∥ p
2

p
2

≤ (3εδ
1
p)p‖A‖pF ‖B‖

p
F

Back to (4), we get:

P
Π∼D

(‖ATB − (ΠA)TΠB‖F > 3ε‖A‖F ‖B‖F) < δ

Comment 1: To achieve low storage and computation complexity, we need to ensure JL mapping
matrix Π is sparse. Sub-Gaussian and AMS sketching matrix we used before are all dense matrices,
which are not suitable here. In [6], it is shown that Countsketch matrix Π satisfies (ε, δ, 2)−JLMP
for m ' 1

ε2δ
and we know that each column of Countsketch matrix has exact one non-zero element

(±1), so it is sparse and can be applied here.

5

Comment 2: It can be seen that JLMP-based approach doesn’t require any knowledge about
matrix A and B, but for sampling-based approach discussed before, we need to know the norm of
each row ai, bi to determine the sampling probability.

2.3 Subspace Embedding

Up to now, we use Frobenius norm to characterize the distance between C and ATB. In some
applications, however, other norms are more relevant. Next, we are going to analyze the cases
where l2 operator norm ‖ · ‖ is used.

As before, we expect to obtain results like:

P(‖ATB − (ΠA)TΠB‖ > ε‖A‖‖B‖) < δ (6)

We consider the case A = B. In this case, (6) becomes:

P(‖ATA− (ΠA)TΠA‖ > ε‖A‖2) < δ (7)

Recall that for symmetric matrix M ∈ Rd×d,

‖M‖ = sup
‖x‖=1

|xTMx|

so (7) is equivalent to say that we want ∀x, ‖x‖ = 1,∣∣‖ΠAx‖22 − ‖Ax‖22∣∣ < ε sup
‖z‖=1

‖Az‖22

with probability greater than 1− δ. In the following, we will base on something stronger:∣∣‖ΠAx‖22 − ‖Ax‖22∣∣ < ε‖Ax‖22

and such Π is called ε−subspace embedding of Col(A). A formal definition is as follows:

Definition 4. For a linear subspace E ⊆ Rn, we say Π is ε−subspace embedding (s.e.) for E if∣∣‖Πx‖22 − 1
∣∣ ≤ ε, ∀x ∈ E, ‖x‖2 = 1 (8)

In fact, we have another equivalent definition by using the orthogonal basis U of E. Then E can
be expressed as: E = {x : x = Uz, z ∈ Rd} with UTU = I, U ∈ Rn×d. Therefore, (8) holds iff
∀x = Uz ∈ E,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22
⇔ (1− ε)‖Uz‖22 ≤ ‖ΠUz‖22 ≤ (1 + ε)‖Uz‖22, ∀z ∈ Rd

⇔ (1− ε)‖z‖22 ≤ ‖ΠUz‖22 ≤ (1 + ε)‖z‖22, ∀z ∈ Rd

⇔ ‖(ΠU)TΠU − I‖ ≤ ε (9)

We can see that (9) gives us an equivalent definition of ε−subspace embedding, in terms of l2
operator norm.

Next, we are going to see an example of using operator norm in approximating matrix multiplication:

6

Example (ordinary least square regression): Given X ∈ Rn×d, y ∈ Rn, least square (LS)
regression computes the best linear approximation to data point y using X:

βLS = argmin
β∈Rd

‖Xβ − y‖22

= (XTX)−1XT y

Thus the best linear approximation is XβLS = X(XTX)−1XT y and X(XTX)−1XT is called
projection matrix, which projects any y ∈ Rn onto the subspace Col(X) and the projection is
X(XTX)−1XT y.

To calculate projection matrix, the term (XTX)−1 incurs highes complexity. The naive approach
needs O(nd2) for loops and we want to compute it faster. The main idea is to embed X and y
into lower-dimensional space: X 7→ ΠX, y 7→ Πy and do regression on ΠX and Πy. First, we
need to ensure such embedding will not introduce large errors, which can be guaranteed by using
ε−subspace embedding:

Claim 5. Define E = span({Col(X), y}) and we assume rank(X) = d, so dim(E) ≤ d+ 1. If Π is
an ε− subspace embedding for E, then

‖Xβ̃LS − y‖22 ≤
1 + ε

1− ε
‖XβLS − y‖22

where β̃LS = argmin
β∈Rd

‖ΠXβ −Πy‖22.

Proof. First, we have

‖ΠXβ̃LS −Πy‖22 ≤ ‖ΠXβLS −Πy‖22 by definition of β̃LS

≤ (1 + ε)‖XβLS − y‖22 Π is an ε− subspace embedding matrix

On the other hand,

‖ΠXβ̃LS −Πy‖22 ≥ (1− ε)‖Xβ̃LS − y‖22

Combining the above two inequalities, we obtain the results.

The remaining task is to find an ε− subspace embedding matrix Π for Col(X̃), where X̃ = [X y].
If X̃ ∈ Rn×(d+1) is a tall matrix, i.e., n ≥ d + 1, a quick way to find Π is via singular value
decomposition (SVD). The definition of SVD is given by the following theorem:

Theorem 6. Every real matrix A ∈ Rn×d with rank(A) = r can be written as:

A = UΣV T (10)

where U ∈ Rn×r, V ∈ Rd×r, UTU = I, V TV = I and Σ = diag(σ1, σ2, . . . , σr), σi > 0. Here, σi are
called singular values.

If we write U = [u1 · · ·ur] and U = [v1 · · · vr], where ui, vi are called left/right singular vectors,
respectively, (10) can also be written as:

A =

r∑
i=1

σiuiv
T
i (11)

7

We can see from Theorem 6 that {u1, . . . , ur} is an orthogonal basis of Col(A), so for tall matrix
X̃ = Ũ Σ̃Ṽ T , we can choose Π = ŨT and ΠŨ = I, which apparently satisfies (9).

In practice, however, doing SVD requires the same complexity as doing original matrix multiplica-
tion, so we need other approaches to realize fast subspace embedding. This will be discussed in the
next lecture.

References

[1] Petros Drineas, Ravi Kannan, Michael Mahoney. Fast Monte Carlo Algorithms for Matrices
I: Approximating Matrix Multiplication. SIAM J. Comput 36(1):132157, 2006.

[2] Tamas Sarlos. Improved Approximation Algorithms for Large Matrices via Random Projec-
tions. FOCS 2006.

[3] Kenneth Clarkson, David Woodruff. Numerical Linear Algebra in the Streaming Model. STOC,
205–214, 2009.

[4] Mihir Bellare, John Rompel. Randomness-Efficient Oblivious Sampling. FOCS, 1994.

[5] Daniel M. Kane, Jelani Nelson. Sparser Johnson-Lindenstrauss Transforms. J. ACM, 61(1),
2014.

[6] Mikkel Thorup, Yin Zhang Tabulation based 4-universal hashing with applications to second
moment estimation. SODA, 2004.

8

