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1 Overview

In the last lecture we mentioned about fast JL transform (FJLT). We said that the time complexity
is O(d log d + m3), where d is the dimension of the vector x and m is the number of rows of the
transform matrix Π. However, in practice, the vector x is often a sparse vector, and we would expect
that the time complexity for the transform x→ Πx is O(m‖x‖0), where ‖x‖0 = |{i : xi 6= 0}|, and
the time complexity of FJLT is terrible if ‖x‖0 is small relative to d.

In this lecture, we suggest methods to to speed up JL by making Π sparse.

2 History of various of methods

2.1 The method by [Ach01]

Here, we first introduce a method purposed by [Ach01].

• Make Π sparse, each column of Π has less or equal than s non-zero entries in expectation.
The expected time is O(s‖x‖0) to compute Πx.

• The specific construction is that Πij ’s are independent random variables that

Πij =

{
0, w.p. 1− q
±1√
qm , w.p. q

where w.p. is the shorthand for with probability.

and [Ach01] proved that to get “∀‖x‖2 = 1, P (
∣∣‖Πx‖22 − 1

∣∣ < ε) < δ”, it is sufficient to take

m ≥ (1 + o(1))
4 ln(2

δ )

ε2
, q =

1

3
(so, s =

m

3
)

2.2 The method by [Mat08]

In [Mat08], it mentions that if the approach is to take i.i.d. sub-gaussian entries, then one must
have

q = Ω(1) for m = O(
1

ε2
lg(

1

δ
)).
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2.3 The method by [DKS10]

In [DKS10], it mentions that it is possible to achieve “∀‖x‖2 = 1, P (
∣∣‖Πx‖22 − 1

∣∣ < ε) < δ” by

m = O(
1

ε2
lg(

1

δ
)), s = Õ(

1

ε
lg3(

1

δ
))

where Õ(f) := f · poly(log(f)).

Specifically, their matrix is constructed in the following way:

Π = AB

where

A =



0
0
...
±1
0
0
...


m×ds

is a matrix with each column has one non-zeros entry with value 1 or −1 and

B =



1
1
...
1

1
1
...
1

. . .

. . . 1

. . . 1

. . .
...

. . . 1


ds×d

where each column has s 1’s and it can duplicate each element s times for the vector x.

Remark 1. Also it is worth mentioning that there were other methods improve s to Õ(ε−1 lg2(1/δ))
by [KN10] and [BOR10].

2.4 The method by [KN14]

Based on the method of [KN14], by noticing the error coming from collision of elements, Prof.
Nelson purposed another approach and proved that it is possible to achieve “∀‖x‖2 = 1, P (

∣∣‖Πx‖22−
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1
∣∣ < ε) < δ” by

m = O(
1

ε2
lg

1

δ
), s = O(

1

ε
lg

1

δ
).

The construction of Π can be in the following two forms, both the analysis we will show works.

Π =
1√
s


±1
0
...
±1
±1


where in each column there are s non-zero entries, being 1 or −1.

Another construction which is easier to implement is:

Π =
1√
s


· · · B1

· · · B2

· · ·
...

· · · Bs


where each block Bi is a m/s column vector with only one entry non-zero, being 1 or −1.

The corresponding countsketch:

h : [d]× [s]→ [
m

s
]

σ : [d]× [s]→ {−1, 1}

3 Analysis

Now, we analysis the method by section 2.4. Our goal is to prove that for any ε > 0

PΠ(
∣∣‖Πx‖22 − 1

∣∣ > ε) < δ

Before that, we make clear of some notations.

Πr,i :=
ηr,iσr,i√

s
, σr,i ∈ {−1, 1}, ηr,i ∈ {0, 1}.

Also we should notice that
Eηr,i =

s

m
.

Now, we begin the analysis.

First, notice that

(Πx)r =

d∑
r=1

Πr,ixi =
1√
s

d∑
i=1

ηr,iσr,ixi,
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then, we can obtain that

‖Πx‖22 =
m∑
r=1

(Πx)2
r =

1

s

m∑
r=1

d∑
i,j=1

ηr,iηr,jσr,iσr,jxixj .

The last term can be conquered in two parts,

1

s

m∑
r=1

d∑
i,j=1

ηr,iηr,jσr,iσr,jxixj =
1

s

m∑
r=1

[ d∑
i=1

x2
i ηr,i +

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj
]

Notice the first part 1
s

∑m
r=1

∑d
i=1 x

2
i ηr,i is exactly ‖x‖22 since

∑
r ηr,i = s, then we only need to

analyze the second part.

We denote

Z =
1

s

m∑
r=1

d∑
i 6=j

ηr,iηr,jσr,iσr,jxixj

In order to analyze Z, we need some inequalities.

3.1 Some Inequalities We Need

Throughout, for a random variable X, ‖X‖p denotes (E |X|p)1/p. It is known that ‖ · ‖p is a norm
for any p ≥ 1 (Minkowski’s inequality). It is also known ‖X‖p ≤ ‖X‖q whenever p ≤ q. Henceforth,
whenever we discuss ‖ · ‖p, we will assume p ≥ 1.

Lemma 1 (Khintchine Inequality). For any p ≥ 1, x ∈ Rn, and (σi) independent Rademachers,

‖
∑
i

σixi‖p .
√
p · ‖x‖2

Lemma 2 (Jensen Inequality). For F convex, F (EX) ≤ EF (X).

Lemma 3 (Markov Inequality ).

P(Z > λ) ≤ λ−p · E |Z|p.

Lemma 4 (Decoupling [DlPG12]). Let x1, . . . , xn be independent and mean zero, and x′1, . . . , x
′
n

identically distributed as the xi and independent of them. Then for any (ai,j) and for all p ≥ 1

‖
∑
i 6=j

ai,jxixj‖p ≤ 4‖
∑
i,j

ai,jxix
′
j‖p

Theorem 5 (Hanson-Wright inequality ). For σ1, . . . , σn independent Rademachers and A ∈ Rn×n
real and symmetric, for all p ≥ 1

‖σTAσ − EσTAσ‖p .
√
p · ‖A‖F + p · ‖A‖.
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Proof. Without loss of generality we assume in this proof that p ≥ 2 (so that p/2 ≥ 1). Then

‖σTAσ − EσTAσ‖p . ‖σTAσ′‖p (by decoupling) (1)

.
√
p · ‖‖Ax‖2‖p (Khintchine) (2)

=
√
p · ‖‖Ax‖22‖

1/2
p/2 (3)

≤ √p · ‖‖Ax‖22‖1/2p

≤ √p · (‖A‖2F + ‖‖Ax‖22 − E ‖Ax‖22‖p)1/2 (triangle inequality)

≤ √p · ‖A‖F +
√
p · ‖‖Ax‖22 − E ‖Ax‖22‖1/2p

.
√
p · ‖A‖F +

√
p · ‖xTATAx′‖1/2p (by decoupling)

.
√
p · ‖A‖F + p3/4 · ‖‖ATAx‖2‖1/2p (Khintchine)

.
√
p · ‖A‖F + p3/4 · ‖A‖1/2 · ‖‖Ax‖2‖1/2p (4)

Writing E = ‖‖Ax‖2‖1/2p and comparing 2 and 4, we see that for some constant C > 0,

E2 − Cp1/4‖A‖1/2E − C‖A‖F ≤ 0.

Thus E must be smaller than the larger root of the above quadratic equation, implying our desired
upper bound on E2.

Theorem 6 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables that are
each at most K almost surely, and where

n∑
i=1

E(Xi − EXi)
2 = σ2.

Then for all p ≥ 1

‖
n∑
i=1

Xi − E
∑
i

Xi‖p . σ
√
p+Kp.

3.2 Analysis of Z

Theorem 7. As long as m ' ε−2 log(1/δ) and s ' εm,

∀x : ‖x‖2 = 1, P
Π

(|‖Πx‖22 − 1| > ε) < δ. (5)

Proof. Abusing notation and treating σ as an mn-dimensional vector,

Z = ‖Πx‖22 − 1 =
1

s

m∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj := σTAx,ησ,

Thus by Hanson-Wright

‖Z‖p ≤ ‖
√
p · ‖Ax,η‖F + p · ‖Ax,η‖‖p ≤

√
p · ‖‖Ax,η‖F ‖p + p · ‖‖Ax,η‖‖p.
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Ax,η is a block diagonal matrix with m blocks, where the rth block is (1/s)x(r)(x(r))T but with
the diagonal zeroed out. Here x(r) is the vector with (x(r))i = ηr,ixi. Now we just need to bound
‖‖Ax,η‖F ‖‖p and ‖‖Ax,η‖‖p.

Since Ax,η is block-diagonal, its operator norm is the largest operator norm of any block. The
eigenvalue of the rth block is at most (1/s) ·max{‖x(r)‖22, ‖x(r)‖2∞} ≤ 1/s, and thus ‖Ax,η‖ ≤ 1/s
with probability 1.

Next, define Qi,j =
∑m

r=1 ηr,iηr,j so that

‖Ax,η‖2F =
1

s2

∑
i 6=j

x2
ix

2
j ·Qi,j .

We will show for p ' s2/m that for all i, j, ‖Qi,j‖p . p, where we take the p-norm over η. Therefore
for this p,

‖‖Ax,η‖F ‖p = ‖‖Ax,η‖2F ‖
1/2
p/2

≤ ‖ 1

s2

∑
i 6=j

x2
ix

2
j ·Qi,j‖1/2p

≤ 1

s

∑
i 6=j

x2
ix

2
j · ‖Qi,j‖p

1/2

(triangle inequality)

≤ 1√
m

Then by Markov’s inequality and the settings of p, s,m,

P(|‖Πx‖22 − 1| > ε) = P(|σTAx,ησ| > ε) < ε−p · Cp(m−p/2 + s−p) < δ.

We now show ‖Qi,j‖p . p, for which we use Bernstein’s inequality.

Suppose ηa1,i, . . . , ηas,i are all 1, where a1 < a2 < . . . < as. Now, note Qi,j can be written as∑s
t=1 Yt, where Yt is an indicator random variable for the event that ηat,j = 1. The Yt are not

independent, but for any integer p ≥ 1 their pth moment is upper bounded by the case that the Yt
are independent Bernoulli each of expectation s/m (this can be seen by simply expanding (

∑
t Yt)

p

then comparing with the independent Bernoulli case monomial by monomial in the expansion).
Thus Bernstein applies, and as desired we have

‖Qi,j‖p = ‖
∑
t

Yt‖p .
√
s2/m · √p+ p ' p.
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