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1 Overview

In the last lecture we mentioned about fast JL transform (FJLT). We said that the time complexity
is O(dlogd + m3), where d is the dimension of the vector z and m is the number of rows of the
transform matrix II. However, in practice, the vector x is often a sparse vector, and we would expect
that the time complexity for the transform x — Iz is O(m||z||o), where ||z|o = |{7 : z; # 0}|, and
the time complexity of FJLT is terrible if ||z||o is small relative to d.

In this lecture, we suggest methods to to speed up JL by making II sparse.

2 History of various of methods

2.1 The method by [AchO1]

Here, we first introduce a method purposed by [Ach01].

e Make II sparse, each column of II has less or equal than s non-zero entries in expectation.
The expected time is O(s||z||o) to compute IIx.
e The specific construction is that II;; ’s are independent random variables that
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where w.p. is the shorthand for with probability.

and [Ach01] proved that to get “V||z||2 = 1, P(||T1z[j3 — 1| <) < 47, it is sufficient to take
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2.2 The method by [Mat08]

In [Mat08], it mentions that if the approach is to take i.i.d. sub-gaussian entries, then one must

have

q=Q(1) for m = O(Ei2 lg(é))



2.3 The method by [DKS10]

In [DKS10], it mentions that it is possible to achieve “V|z||2 = 1, P(|||Ilz||3 — 1| < &) < &” by
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where O(f) := f - poly(log(f)).
Specifically, their matrix is constructed in the following way:
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is a matrix with each column has one non-zeros entry with value 1 or —1 and
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where each column has s 1’s and it can duplicate each element s times for the vector x.

Remark 1. Also it is worth mentioning that there were other methods improve s to O(e~'1g%(1/6))
by [KN10] and [BOR10].

2.4 The method by [KN14]

Based on the method of [KN14], by noticing the error coming from collision of elements, Prof.
Nelson purposed another approach and proved that it is possible to achieve “V||z||2 = 1, P( ’ | TLz||3 —
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The construction of II can be in the following two forms, both the analysis we will show works.
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where in each column there are s non-zero entries, being 1 or —1.

Another construction which is easier to implement is:
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where each block B; is a m/s column vector with only one entry non-zero, being 1 or —1.

The corresponding countsketch:

3 Analysis

Now, we analysis the method by section 2.4. Our goal is to prove that for any € > 0

P[5 —1] >¢) < 3§

Before that, we make clear of some notations.
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Also we should notice that
Enr,i =

Now, we begin the analysis.

First, notice that
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then, we can obtain that
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The last term can be conquered in two parts,
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Notice the first part 23", 25:1 xn,; is exactly ||z||3 since >, m,; = s, then we only need to
analyze the second part.

We denote

1 m d
Z = 5 E E NriMr,jOriOr jTi T
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In order to analyze Z, we need some inequalities.

3.1 Some Inequalities We Need

Throughout, for a random variable X, || X||, denotes (E|X|P)!/P. Tt is known that || - ||, is a norm
for any p > 1 (Minkowski’s inequality). It is also known || X ||, < || X||, whenever p < ¢q. Henceforth,
whenever we discuss || - ||, we will assume p > 1.

Lemma 1 (Khintchine Inequality). For any p > 1, x € R", and (0;) independent Rademachers,
1Y oiwilly S VP 12
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Lemma 2 (Jensen Inequality). For F' convezr, F(EX) <EF(X).
Lemma 3 (Markov Inequality ).
P(Z > \) < AP E|Z].

/

Lemma 4 (Decoupling [DIPG12]). Let x1,...,xy, be independent and mean zero, and ', ..., x},

identically distributed as the x; and independent of them. Then for any (a; ;) and for allp > 1
1 aigziailly, < 41 ai gz,
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Theorem 5 (Hanson-Wright inequality ). For o1, ..., 0, independent Rademachers and A € R™*™
real and symmetric, for all p > 1

loT Ao —EoT Acll, < o ||AllF +p- ||Al



Proof. Without loss of generality we assume in this proof that p > 2 (so that p/2 > 1). Then

|oT Ao —Eol Ac||, < |lo? Ad’||, (by decoupling) (1)
S VP 1Az ]|2]l, (Khintchine) (2)
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Writing E = || ||A{L‘||2H11;/2 and comparing 2 and 4, we see that for some constant C' > 0,
E? - Cp'|A|'?E - C|lA|lF < 0.

Thus F must be smaller than the larger root of the above quadratic equation, implying our desired
upper bound on EZ. O

Theorem 6 (Bernstein’s inequality). Let Xi,...,X, be independent random wvariables that are
each at most K almost surely, and where

n
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Then for all p > 1
n
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3.2 Analysis of 7
Theorem 7. As long as m ~ e 2log(1/8) and s ~ em,
Ve flalls = 1, B(INlE -1 > ) <6 -

Proof. Abusing notation and treating o as an mn-dimensional vector,
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Thus by Hanson-Wright
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A, is a block diagonal matrix with m blocks, where the rth block is (1/s)z™ ()T but with
the diagonal zeroed out. Here 2" is the vector with (a:(T))i = nr;7;. Now we just need to bound
Azl Fllllp and [[[| Az,

-

Since A, is block-diagonal, its operator norm is the largest operator norm of any block. The
eigenvalue of the rth block is at most (1/s) - max{[|z(™|3,||=(™||2} < 1/s, and thus || A, | < 1/s
with probability 1.

Next, define @Q); ; = 2173;1 Mr,iMr,j SO that
1
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We will show for p ~ s?/m that for all 4, 7, || Qi ;|| < p, where we take the p-norm over 7). Therefore
for this p,
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Then by Markov’s inequality and the settings of p, s, m,
P(|[|Oz|3 - 1| > ¢) = P(|O’TAL770'| >eg)<e P Cp('mfp/2 +s7P) <6

We now show [|Q; ||, S p, for which we use Bernstein’s inequality.

Suppose 7, i, --,Ma,,i are all 1, where a1 < a2 < ... < as. Now, note @;; can be written as
Zle Y;, where Y; is an indicator random variable for the event that 7, ; = 1. The Y; are not
independent, but for any integer p > 1 their pth moment is upper bounded by the case that the Y;
are independent Bernoulli each of expectation s/m (this can be seen by simply expanding (>, Y;)?
then comparing with the independent Bernoulli case monomial by monomial in the expansion).
Thus Bernstein applies, and as desired we have

1Qiglly = 11D Yilly S V/s2/m-/p+p=p.
t
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