
CS 226 / 6.889 Sketching Algorithms for Big Data
— Fall 2017

Problem Set 1
Due: 11:59pm, Monday, October 2nd

Submit to: sketchingbigdata-f17-assignments@seas.harvard.edu

See homework policy at http://www.sketchingbigdata.org/fall17/syllabus/

Preamble: As you probably noticed, this pset is long. It does not mean it is difficult.
The length is mostly due to the fact that the problems introduce additional material and
concepts that (we believe) are interesting and shed new light on the material seen in the
lecture. If you have any questions about the new material, please contact the TA or the
professors.

Problem 1: More on incoherent matrices. Recall from the JL lower bound lecture
that an ε-incoherent matrix Π ∈ Rm×n is such that each column Πi of Π has unit `2 norm
(i.e.

∑m
j=1(Πi)2

j = 1), and the dot products 〈Πi,Πj〉 are all at most ε in magnitude for i 6= j.

(a) (3 points) In Lecture 5 we stated that an n×n real symmetric “ε-approximate identity”
matrix A (with 1’s on the diagonal and ±ε on the off-diagonal entries) has rank Ω(n)
if ε < 1/

√
n. Let A⊕k ∈ Rn×n be defined such that (A⊕k)i,j = (Ai,j)

k. Show that
if r := rank(A), then rank(A⊕k) ≤

(
r+k
k

)
. Deduce a dimension lower bound of m =

Ω(min{n, ε−2 log n/ log(1/ε)}) for (1 + ε)-dimensionality reduction on the simplex.

(b) (2 points) In class we observed that any (1+ε)-distortion embedding of the simplexX =
{0, e1, . . . , en} ⊂ Rn gives an O(ε)-incoherent matrix. Conversely, any ε-incoherent
matrix Π gives a (1 + ε)-distortion embedding of the simplex (map 0 to 0, and ei to
Πi). Noga Alon’s lower bound showed that any ε-incoherent matrix with m rows needs
m & min{n, ε−2 lg n/ lg(1/ε)}. This construction gives a hard point set of size n + 1
in dimension n for any n (or said differently, a hard point set of size n in dimension
d = n − 1). Show how to use Alon’s approach to show that for any d < n ≤ 2O(ε2d),
there is a hard point set such that any (1+ε)-distortion embedding into m-dimensional
Euclidean space requires m & min{n, ε−2 lg n/ lg(1/ε)}.

One way to construct an incoherent matrix is from a code. In particular, if C =
{C1, . . . , CN} is a collection of N vectors each in [q]t for some positive integers q, t (where
[q] denotes {1, . . . , q}), then define α ∈ (0, 1) as the maximum fraction of the t coordinates
for which any distinct Ci, Cj agree. Given such a code, one can construct an ε-incoherent
matrix with m = qt, n = N , and ε = α as in Figure 1. Note the dot product between two
different codewords is exactly the fraction of coordinates on which they agree.

We would like to show how to construct a code that gives small m = qt.

1

1

1

0

0

0
0
0
0
0

0
0

1√
t
·

q

Figure 1: Each codeword gives one column of the incoherent matrix. Here q = 4, t = 3 and
the codeword is Ci = (1, 1, 3). The vector is m = qt dimensional with the coordinates broken
up into t blocks each of size q. A 1 is placed in the jth position in the location specified by
(Ci)j. The entire vector is normalized by 1/

√
t to have unit norm.

(c) (3 points) Show that for any N and 0 < α < 1/2, such codes exist with q = O(α−1), t =
O(α−1 logN) by picking random Ci (hint: use the Chernoff bound). Note this gives
an incoherent matrix with N columns and m = qt = O(ε−2 logN) rows, matching JL.

It turns out one can do better when ε is sufficiently small. Consider the finite field Fq and
consider all polynomials p1, . . . , pN ∈ Fq[x] of degree at most d where N = qd+1. Define the
Reed-Solomon code C1, . . . , CN as follows: t = q where the jth entry of Ci is the evaluation
of pi on the jth element of Fq (so Ci is the evaluation table of pi).

(d) (6 points) Recall we need N ≥ n to ensure there are enough Ci’s to form our matrix
Π. Show how to choose d, q so N ≥ n and α ≤ ε, and show what this gives (in big-Oh
notation) for m = qt being the number of rows over the incoherent matrix Π we obtain.

(e) (4 points) How small does ε need to be as a function of n for the codes from part (d)
to give smaller m than the random codes from part (c)? If the turning point is εT , you
should provide an answer ε′T such that log(1/ε′T) = Θ(log(1/εT)).

(f) (5 points) Suppose one has an ε-incoherent matrix Π. Show how `1-point queries to x
being updated in the turnstile streaming model can be answered solely given y = Πx.
(Note then that part (d) implies a deterministic `1-point query algorithm with low
space in turnstile streams.) Hint: it may help to remember that Πx =

∑
i xiΠ

i.

OPEN PROBLEM: As mentioned above, an incoherent matrix with m = O(ε−2 log n)
exists. The solution to this problem provides another, incomparable bound. The lower
bound is m = Ω(min{n, ε−2(log n)/ log(1/ε))} [1, Section 9]. Can the gap between upper
and lower bounds be closed? It is conceivable a better upper bound could be achieved by
discovering a better code construction.

2

Problem 2: Counting distinct elements with deletions. In Lecture 2 we showed how
to estimate the number of distinct elements in a stream in poly(ε−1 lg n) bits of space with
2/3 success probability, where all integers in the stream are in [n]. As mentioned in Lecture
3, this problem can be re-cast in the following way: there is a vector x ∈ Rn that starts as
0, and each integer i in the stream causes the change xi ← xi + 1. We would then like to
estimate ‖x‖0 := |{i : xi 6= 0}|. What if the updates in the stream are of the form (i,∆) for
∆ ∈ {−1, 1}, and now such an update causes the change xi ← xi + ∆?

(a) (2 points) What about our non-idealized algorithm from Lecture 2 breaks down now
that negative updates are also allowed?

(b) (8 points) Show how to alter the non-idealized algorithm to obtain space poly(ε−1 lg(nm))
for this modified problem, where m is the length of the stream. Hint: consider using
techniques from Lecture 7 to fix the issue in part (a).

Problem 3: Reducing randomness via Nisan’s Generator. In Lecture 4 we have seen
a collection of algorithms for estimating the `p norm of the n-dimensional vector x induced by
the stream, for p ∈ (0, 2]. The idea was to calculate a “linear sketch” Πx = [Z1 . . . Zk], where
R was an k × n random matrix, with i.i.d. entries rij selected from a p-stable distribution.
After calculating Πx, the algorithm outputs

median[|Z1|, · · · , |Zk|]/C(p)

as an estimator of ‖x‖p, where C(p) denotes some scaling factor that depends only on p.
To make life simple, in this problem we will focus on the decision version of the algorithm,
which checks whether

median[|Z1|, · · · , |Zk|]/C(p) ≥ T (1)

for some threshold T . For concreteness, in what follows we focus on p = 2, in which case the
entries of Π can be selected from Gaussian distribution N (0, 1). We also assume that the
entries of x always remain integers from {−M . . .M} for some M = nO(1), i.e., they have
values polynomial in the dimension n.

The analysis in the lecture skipped over the following two issues:

• Discretization: given that the algorithm space is measured in bits, we need to make
sure that each rij has bounded precision. Dealing with this issue is straightforward,
as we can modify the random variables so that their values fall into an interval
[−C√log n . . . C

√
log n], and are multiples of of 1/nC , for some C = O(1). The anal-

ysis of the modified algorithm remains essentially unchanged, modulo minor increase
in the approximation error and failure probability. In what follows we assume that
rij are already generated in this way, and therefore need only b = O(log n) bits of
representation.

3

• Pseudo-randomness: even if r′ijs are discrete, we cannot afford to store all of them
in memory, as this would require knb bits of storage. Instead, it was mentioned that
they can be generated “on the fly” using a pseudorandom generator, i.e., there is
an efficiently computable mapping G : {0, 1}L → {{0, 1}b}nk such that we can set
rij = G(v)ij, where v is a “random seed” selected from {0, 1}L uniformly at random.
Formalizing and optimizing this step is the focus of this problem.

We will use the pseudo-random generator for bounded space due to Nisan [2]. Consider
a class of (S, b)-automata Q, that have 2S states and read sequences of symbols from {0, 1}b,
i.e., operate over an alphabet of size 2b. Such automata are defined by:

• a transition function Q(s, a), which descibe the state the automaton moves to from
state s after reading a,

• an initial state start, and

• a set of accepting states Acc.

Such automata can model any deterministic computation device that processes a sequence
u of symbols from {0, 1}b in space S. We use Q(u) to denote the state reached by the
automaton after reading u, starting from start.

Nisan’s generator G has the following wonderful properties. Suppose that the automaton
is applied to sequences of length R. Then:

• The seed length L of G is equal to O(S logR), assuming b = O(S).

• It ε-fools any (S, b)-automaton Q , i.e.,

| P
u∈({0,1}b)R

[Q(u) ∈ Acc]− P
v∈{0,1}L

[Q(G(v)) ∈ Acc]| ≤ ε

for ε = 2−Ω(S).

Note that in the above definition, the input to Q consists of (pseudo)-random bits, which
are “tested” by Q. Nisan’s generator is designed to ε-fool all such tests, despite generating
randomness from a relatively small truly random seed.

To use Nisan’s generator in our streaming algorithm, we need to model the algorithm as
a finite automaton reading the random entries of the matrix Π and producing some decision
in the end. Then we use the properties of the generator to argue that replacing truly random
Π by a pseudorandomly generated version does not (significantly) alter the behavior of the
algorithm.

The computation specified in Equation (1) can be performed by an automaton Q that
reads the entries r1,1, . . . , r1,n, r2,1, . . . , r2,n, . . . rk,n of Π (i.e., in the row-wise order), computes
the vector [Z1, · · · , Zk], evaluates the median and accepts if the result is at least T . (Note
that Q is parameterized by the vector x, i.e., x is not an input to Q!).

Finally, we are ready to state the problems:

4

(a) (3 points) Observe that Q can be implemented so that S = O(k log n). Calculate the
length of the seed L required to 2−Ω(S)-fool such automata Q.

(b) (12 points) Show a better implementation of Q that requires only S = O(log k+log n).
Calculate the length of the seed L required to 2−Ω(S)-fool such automata Q.

Problem 4: (1 point) How much time did you spend on this problem set? If you can
remember the breakdown, please report this per problem. (sum of time spent solving problem
and typing up your solution)

References

[1] Noga Alon. Problems and results in extremal combinatorics–I Discrete Mathematics,
273(1-3): 31–53, 2003.

[2] Noam Nisan. Pseudorandom Generators for Space-Bounded Computation. Combina-
torica, 12(4):449-461, 1992.

5

