Toggle navigation
Sketching Algorithms
Fall 2020
Current offering (Fall 2020)
Sketching Algorithms
Related previous offerings
Sketching Algorithms for Big Data
: Piotr Indyk (MIT), Jelani Nelson (Harvard).
Sketching, Streaming, and Sub-linear Space algorithms
: Piotr Indyk (MIT).
Algorithms for Big Data
: Jelani Nelson (Harvard).
Related courses at other schools
Algorithmic Techniques for Big Data
: Moses Charikar (Stanford).
Algorithmic Techniques for Big Data Analysis
: Barna Saha (University of Minnesota Twin Cities).
Algorithmic Techniques for Massive Data
: Alexandr Andoni (Columbia).
Algorithms for Big Data
: Chandra Chekuri (UIUC).
Algorithms for Big Data
: David Woodruff (CMU).
Algorithms for Big Data
: Grigory Yaroslavtsev (UPenn).
Algorithms for Modern Data Models
: Ashish Goel (Stanford).
Data Streams Algorithms
: Andrew McGregor (UMass Amherst).
Data Stream Algorithms
: Amit Chakrabarti (Dartmouth).
Dealing with Massive Data
: Sergei Vassilvitskii (Columbia).
Mining Massive Data Sets
: Jure Leskovec (Stanford).
Models of Computation for Massive Data
: Jeff Phillips (Utah).
Randomized Algorithms for Matrices and Data
: Michael Mahoney (UC Berkeley).
Seminar on Data Streams
: Hung Ngo, Atri Rudra (Buffalo).
Sublinear Algorithms
: Erice Price (UT Austin).
Sublinear algorithms
: Piotr Indyk, Ronitt Rubinfeld (MIT).
Sublinear and streaming algorithms
: Paul Beame (University of Washington).
The Modern Algorithmic Toolbox
: Tim Roughgarden, Gregory Valiant (Stanford).
A list of
compressed sensing courses
, compiled by Igor Carron.